Spaces:
Running
Running
Upload 14 files
Browse files
interface/portfolio_rebalancing_interface.py
CHANGED
@@ -9,7 +9,7 @@ def portfolio_rebalancing_interface_fn(main_currency, holdings, cash_amount, cas
|
|
9 |
|
10 |
currency_codes = get_currency_codes()
|
11 |
examples = [
|
12 |
-
["KRW", "458730 KRW 580 8,\n368590 KRW 80 2",
|
13 |
["KRW", "SCHD USD 500 8,\nQQQ USD 200 2", 0, 15]
|
14 |
]
|
15 |
|
|
|
9 |
|
10 |
currency_codes = get_currency_codes()
|
11 |
examples = [
|
12 |
+
["KRW", "458730 KRW 580 8,\n368590 KRW 80 2", 507977, 0],
|
13 |
["KRW", "SCHD USD 500 8,\nQQQ USD 200 2", 0, 15]
|
14 |
]
|
15 |
|
interface/retirement_planning_interface.py
CHANGED
@@ -2,8 +2,8 @@ import gradio as gr
|
|
2 |
from modules.utils import load_css
|
3 |
from modules.retirement_planning import retirement_planning
|
4 |
|
5 |
-
def retirement_planning_interface_fn(current_age, retirement_age, current_investment, monthly_investment, pre_retirement_roi, post_retirement_roi, pre_retirement_dividend_yield, post_retirement_dividend_yield, reinvest_dividends, life_expectancy):
|
6 |
-
result = retirement_planning(current_age, retirement_age, current_investment, monthly_investment, pre_retirement_roi, post_retirement_roi, pre_retirement_dividend_yield, post_retirement_dividend_yield, reinvest_dividends, life_expectancy)
|
7 |
css = load_css()
|
8 |
return css + result
|
9 |
|
@@ -17,11 +17,13 @@ retirement_planning_inputs = [
|
|
17 |
gr.Number(label="Expected Dividend Yield (Pre-retirement) (%)", value=3.3),
|
18 |
gr.Number(label="Expected Dividend Yield (Post-retirement) (%)", value=3.3),
|
19 |
gr.Checkbox(label="Reinvest Dividends", value=True),
|
20 |
-
gr.Slider(label="Life Expectancy (Upto 100 Years)", value=80, minimum=30, maximum=100, step=1)
|
|
|
|
|
21 |
]
|
22 |
|
23 |
output = gr.HTML()
|
24 |
|
25 |
# Define the update function
|
26 |
-
def update_output(current_age, retirement_age, current_investment, monthly_investment, pre_retirement_roi, post_retirement_roi, pre_retirement_dividend_yield, post_retirement_dividend_yield, reinvest_dividends, life_expectancy):
|
27 |
-
return retirement_planning_interface_fn(current_age, retirement_age, current_investment, monthly_investment, pre_retirement_roi, post_retirement_roi, pre_retirement_dividend_yield, post_retirement_dividend_yield, reinvest_dividends, life_expectancy)
|
|
|
2 |
from modules.utils import load_css
|
3 |
from modules.retirement_planning import retirement_planning
|
4 |
|
5 |
+
def retirement_planning_interface_fn(current_age, retirement_age, current_investment, monthly_investment, pre_retirement_roi, post_retirement_roi, pre_retirement_dividend_yield, post_retirement_dividend_yield, reinvest_dividends, life_expectancy, monthly_expenses, inflation_rate):
|
6 |
+
result = retirement_planning(current_age, retirement_age, current_investment, monthly_investment, pre_retirement_roi, post_retirement_roi, pre_retirement_dividend_yield, post_retirement_dividend_yield, reinvest_dividends, life_expectancy, monthly_expenses, inflation_rate)
|
7 |
css = load_css()
|
8 |
return css + result
|
9 |
|
|
|
17 |
gr.Number(label="Expected Dividend Yield (Pre-retirement) (%)", value=3.3),
|
18 |
gr.Number(label="Expected Dividend Yield (Post-retirement) (%)", value=3.3),
|
19 |
gr.Checkbox(label="Reinvest Dividends", value=True),
|
20 |
+
gr.Slider(label="Life Expectancy (Upto 100 Years)", value=80, minimum=30, maximum=100, step=1),
|
21 |
+
gr.Number(label="Monthly Expenses", value=2000000),
|
22 |
+
gr.Number(label="Inflation Rate (%)", value=2)
|
23 |
]
|
24 |
|
25 |
output = gr.HTML()
|
26 |
|
27 |
# Define the update function
|
28 |
+
def update_output(current_age, retirement_age, current_investment, monthly_investment, pre_retirement_roi, post_retirement_roi, pre_retirement_dividend_yield, post_retirement_dividend_yield, reinvest_dividends, life_expectancy, monthly_expenses, inflation_rate):
|
29 |
+
return retirement_planning_interface_fn(current_age, retirement_age, current_investment, monthly_investment, pre_retirement_roi, post_retirement_roi, pre_retirement_dividend_yield, post_retirement_dividend_yield, reinvest_dividends, life_expectancy, monthly_expenses, inflation_rate)
|
modules/retirement_planning.py
CHANGED
@@ -1,6 +1,10 @@
|
|
|
|
|
|
|
|
|
|
1 |
from modules.utils import load_css
|
2 |
|
3 |
-
def retirement_planning(current_age=None, retirement_age=None, current_investment=None, monthly_investment=None, pre_retirement_roi=None, post_retirement_roi=None, pre_retirement_dividend_yield=None, post_retirement_dividend_yield=None, reinvest_dividends=False, life_expectancy=None):
|
4 |
# NoneTypeμΌ λ 0μΌλ‘ μ²λ¦¬
|
5 |
current_age = current_age if current_age is not None else 0
|
6 |
retirement_age = retirement_age if retirement_age is not None else 0
|
@@ -11,6 +15,8 @@ def retirement_planning(current_age=None, retirement_age=None, current_investmen
|
|
11 |
pre_retirement_dividend_yield = pre_retirement_dividend_yield if pre_retirement_dividend_yield is not None else 0
|
12 |
post_retirement_dividend_yield = post_retirement_dividend_yield if post_retirement_dividend_yield is not None else 0
|
13 |
life_expectancy = life_expectancy if life_expectancy is not None else 0
|
|
|
|
|
14 |
|
15 |
# μν΄ μ νμ λ
μ κ³μ°
|
16 |
years_to_retirement = retirement_age - current_age
|
@@ -23,6 +29,7 @@ def retirement_planning(current_age=None, retirement_age=None, current_investmen
|
|
23 |
monthly_return_pre = (1 + pre_retirement_roi / 100) ** (1 / 12) - 1
|
24 |
|
25 |
# μν΄ μμ μ ν¬μ κ³μ°
|
|
|
26 |
for year in range(years_to_retirement):
|
27 |
for month in range(12):
|
28 |
# μκ° ν¬μμ‘κ³Ό μ΄μμ¨μ μ μ©νμ¬ μ΄ ν¬μμ‘ κ°±μ
|
@@ -30,6 +37,7 @@ def retirement_planning(current_age=None, retirement_age=None, current_investmen
|
|
30 |
# λ°°λΉκΈμ μ¬ν¬μν κ²½μ° λ°°λΉκΈ μΆκ°
|
31 |
if reinvest_dividends:
|
32 |
total_investment += total_investment * (pre_retirement_dividend_yield / 100 / 12)
|
|
|
33 |
|
34 |
# μν΄ μμ μμ μ μ΄ ν¬μμ‘κ³Ό μ°κ° λ°°λΉ μμ΅ μ μ₯
|
35 |
investment_at_retirement = total_investment
|
@@ -53,9 +61,37 @@ def retirement_planning(current_age=None, retirement_age=None, current_investmen
|
|
53 |
# κ° μ°λλ³ ν¬μμ λ°°λΉ μμ΅μ 리μ€νΈμ μΆκ°
|
54 |
post_retirement_investments.append((retirement_age + year, total_investment, annual_dividend_income, monthly_dividend_income))
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
# style.cssμμ CSS μ½κΈ°
|
57 |
css = load_css()
|
58 |
|
|
|
|
|
|
|
|
|
59 |
# μν΄ κ³νμ λν HTML κ²°κ³Ό μμ±
|
60 |
result_html = css + f"""
|
61 |
<div class="wrap-text" style="box-shadow: 0 0.25rem 0.5rem rgba(0, 0, 0, 0.1); border-radius: 0.5rem; padding: 3rem; position: relative; width: 100%; padding: 1.5rem;">
|
@@ -81,8 +117,14 @@ def retirement_planning(current_age=None, retirement_age=None, current_investmen
|
|
81 |
<hr style="margin: 1.5rem 0;">
|
82 |
</div>
|
83 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
</div>
|
85 |
-
<h3>Dividend Income After Retirement</h3>
|
86 |
<div class='table-container'>
|
87 |
<table>
|
88 |
<thead>
|
@@ -91,19 +133,21 @@ def retirement_planning(current_age=None, retirement_age=None, current_investmen
|
|
91 |
<th>SAVINGS</th>
|
92 |
<th>Annual</th>
|
93 |
<th>Monthly</th>
|
|
|
94 |
</tr>
|
95 |
</thead>
|
96 |
<tbody>
|
97 |
"""
|
98 |
|
99 |
# κ° μ°λλ³ ν¬μμ λ°°λΉ μμ΅μ ν
μ΄λΈμ μΆκ°
|
100 |
-
for age, investment, annual_dividend_income, monthly_dividend_income in
|
101 |
result_html += f"""
|
102 |
<tr>
|
103 |
<td>{age}</td>
|
104 |
<td>{investment:,.0f}</td>
|
105 |
<td>{annual_dividend_income:,.0f}</td>
|
106 |
<td>{monthly_dividend_income:,.0f}</td>
|
|
|
107 |
</tr>
|
108 |
"""
|
109 |
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import pandas as pd
|
3 |
+
from io import BytesIO
|
4 |
+
import base64
|
5 |
from modules.utils import load_css
|
6 |
|
7 |
+
def retirement_planning(current_age=None, retirement_age=None, current_investment=None, monthly_investment=None, pre_retirement_roi=None, post_retirement_roi=None, pre_retirement_dividend_yield=None, post_retirement_dividend_yield=None, reinvest_dividends=False, life_expectancy=None, monthly_expenses=None, inflation_rate=None):
|
8 |
# NoneTypeμΌ λ 0μΌλ‘ μ²λ¦¬
|
9 |
current_age = current_age if current_age is not None else 0
|
10 |
retirement_age = retirement_age if retirement_age is not None else 0
|
|
|
15 |
pre_retirement_dividend_yield = pre_retirement_dividend_yield if pre_retirement_dividend_yield is not None else 0
|
16 |
post_retirement_dividend_yield = post_retirement_dividend_yield if post_retirement_dividend_yield is not None else 0
|
17 |
life_expectancy = life_expectancy if life_expectancy is not None else 0
|
18 |
+
monthly_expenses = monthly_expenses if monthly_expenses is not None else 0
|
19 |
+
inflation_rate = inflation_rate if inflation_rate is not None else 0
|
20 |
|
21 |
# μν΄ μ νμ λ
μ κ³μ°
|
22 |
years_to_retirement = retirement_age - current_age
|
|
|
29 |
monthly_return_pre = (1 + pre_retirement_roi / 100) ** (1 / 12) - 1
|
30 |
|
31 |
# μν΄ μμ μ ν¬μ κ³μ°
|
32 |
+
investment_over_time = []
|
33 |
for year in range(years_to_retirement):
|
34 |
for month in range(12):
|
35 |
# μκ° ν¬μμ‘κ³Ό μ΄μμ¨μ μ μ©νμ¬ μ΄ ν¬μμ‘ κ°±μ
|
|
|
37 |
# λ°°λΉκΈμ μ¬ν¬μν κ²½μ° λ°°λΉκΈ μΆκ°
|
38 |
if reinvest_dividends:
|
39 |
total_investment += total_investment * (pre_retirement_dividend_yield / 100 / 12)
|
40 |
+
investment_over_time.append((current_age + year + 1, total_investment))
|
41 |
|
42 |
# μν΄ μμ μμ μ μ΄ ν¬μμ‘κ³Ό μ°κ° λ°°λΉ μμ΅ μ μ₯
|
43 |
investment_at_retirement = total_investment
|
|
|
61 |
# κ° μ°λλ³ ν¬μμ λ°°λΉ μμ΅μ 리μ€νΈμ μΆκ°
|
62 |
post_retirement_investments.append((retirement_age + year, total_investment, annual_dividend_income, monthly_dividend_income))
|
63 |
|
64 |
+
# λ¬Όκ°μμΉλ₯ μ λ°μν μ λͺ©ν μνλΉ κ³μ°
|
65 |
+
adjusted_monthly_expenses = [monthly_expenses * ((1 + inflation_rate / 100) ** year) for year in range(post_retirement_years + 1)]
|
66 |
+
|
67 |
+
# λ°μ΄ν° νλ μμΌλ‘ λ³ν
|
68 |
+
df = pd.DataFrame(post_retirement_investments, columns=['Age', 'SAVINGS', 'Annual Dividend', 'Monthly Dividend'])
|
69 |
+
df['Monthly Expenses'] = adjusted_monthly_expenses
|
70 |
+
|
71 |
+
# κ·Έλν μμ±
|
72 |
+
plt.figure(figsize=(10, 6))
|
73 |
+
plt.plot(df['Age'], df['Monthly Dividend'], label='Monthly Dividend')
|
74 |
+
plt.plot(df['Age'], df['Monthly Expenses'], label='Monthly Expenses', linestyle='--')
|
75 |
+
plt.xlabel('Age')
|
76 |
+
plt.ylabel('Amount')
|
77 |
+
plt.title('Monthly Dividend vs Monthly Expenses (Adjusted for Inflation)')
|
78 |
+
plt.legend()
|
79 |
+
plt.grid(True)
|
80 |
+
|
81 |
+
# κ·Έλνλ₯Ό μ΄λ―Έμ§λ‘ λ³ν
|
82 |
+
buffer = BytesIO()
|
83 |
+
plt.savefig(buffer, format='png')
|
84 |
+
buffer.seek(0)
|
85 |
+
img_str = base64.b64encode(buffer.read()).decode('utf-8')
|
86 |
+
plt.close()
|
87 |
+
|
88 |
# style.cssμμ CSS μ½κΈ°
|
89 |
css = load_css()
|
90 |
|
91 |
+
# CSV λ°μ΄ν° μμ±
|
92 |
+
csv_data = df.to_csv(index=False)
|
93 |
+
csv_base64 = base64.b64encode(csv_data.encode()).decode()
|
94 |
+
|
95 |
# μν΄ κ³νμ λν HTML κ²°κ³Ό μμ±
|
96 |
result_html = css + f"""
|
97 |
<div class="wrap-text" style="box-shadow: 0 0.25rem 0.5rem rgba(0, 0, 0, 0.1); border-radius: 0.5rem; padding: 3rem; position: relative; width: 100%; padding: 1.5rem;">
|
|
|
117 |
<hr style="margin: 1.5rem 0;">
|
118 |
</div>
|
119 |
</div>
|
120 |
+
<div>
|
121 |
+
<img src="data:image/png;base64,{img_str}" alt="Monthly Dividend vs Monthly Expenses (Adjusted for Inflation)" style="max-width: 100%; height: auto;"/>
|
122 |
+
</div>
|
123 |
+
</div>
|
124 |
+
<div style="display: flex; align-items: center; justify-content: space-between;">
|
125 |
+
<h3>Dividend Income After Retirement</h3>
|
126 |
+
<a href="data:text/csv;base64,{csv_base64}" download="retirement_planning.csv" style="padding: 10px 20px; border: 1px solid; border-radius: 5px; background-color: #1678fb; color: white; text-decoration: none;">Download CSV</a>
|
127 |
</div>
|
|
|
128 |
<div class='table-container'>
|
129 |
<table>
|
130 |
<thead>
|
|
|
133 |
<th>SAVINGS</th>
|
134 |
<th>Annual</th>
|
135 |
<th>Monthly</th>
|
136 |
+
<th>Expenses</th>
|
137 |
</tr>
|
138 |
</thead>
|
139 |
<tbody>
|
140 |
"""
|
141 |
|
142 |
# κ° μ°λλ³ ν¬μμ λ°°λΉ μμ΅μ ν
μ΄λΈμ μΆκ°
|
143 |
+
for age, investment, annual_dividend_income, monthly_dividend_income, monthly_exp in zip(df['Age'], df['SAVINGS'], df['Annual Dividend'], df['Monthly Dividend'], df['Monthly Expenses']):
|
144 |
result_html += f"""
|
145 |
<tr>
|
146 |
<td>{age}</td>
|
147 |
<td>{investment:,.0f}</td>
|
148 |
<td>{annual_dividend_income:,.0f}</td>
|
149 |
<td>{monthly_dividend_income:,.0f}</td>
|
150 |
+
<td>{monthly_exp:,.0f}</td>
|
151 |
</tr>
|
152 |
"""
|
153 |
|
style.css
CHANGED
@@ -142,6 +142,7 @@
|
|
142 |
}
|
143 |
}
|
144 |
|
|
|
145 |
.table-container {
|
146 |
width: 100%;
|
147 |
overflow: auto;
|
@@ -163,12 +164,9 @@
|
|
163 |
background-color: var(--background-color-light);
|
164 |
}
|
165 |
|
166 |
-
.table-container tr:hover td {
|
167 |
-
background: #e7f9ef;
|
168 |
-
}
|
169 |
-
|
170 |
.table-container th {
|
171 |
background-color: var(--highlight-color-light);
|
|
|
172 |
position: sticky;
|
173 |
top: 0;
|
174 |
z-index: 2;
|
@@ -185,6 +183,16 @@
|
|
185 |
z-index: 3;
|
186 |
}
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
@media (prefers-color-scheme: dark) {
|
189 |
.table-container {
|
190 |
border: 1px hidden #444;
|
@@ -209,5 +217,14 @@
|
|
209 |
.table-container tr:hover td {
|
210 |
background: #e7f9ef;
|
211 |
color: #000;
|
|
|
|
|
|
|
212 |
}
|
213 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
}
|
143 |
}
|
144 |
|
145 |
+
/* κΈ°λ³Έ ν
μ΄λΈ μ€νμΌ */
|
146 |
.table-container {
|
147 |
width: 100%;
|
148 |
overflow: auto;
|
|
|
164 |
background-color: var(--background-color-light);
|
165 |
}
|
166 |
|
|
|
|
|
|
|
|
|
167 |
.table-container th {
|
168 |
background-color: var(--highlight-color-light);
|
169 |
+
color: var(--header-color-light); /* λΌμ΄νΈ λͺ¨λμμ νμ΄ν μμμ μ€μ */
|
170 |
position: sticky;
|
171 |
top: 0;
|
172 |
z-index: 2;
|
|
|
183 |
z-index: 3;
|
184 |
}
|
185 |
|
186 |
+
/* λ§μ°μ€μ€λ² ν¨κ³Ό */
|
187 |
+
.table-container tr:hover td {
|
188 |
+
background: #e7f9ef;
|
189 |
+
color: #000;
|
190 |
+
border: 1px solid #4caf50;
|
191 |
+
transform: scale(1.02);
|
192 |
+
transition: all 0.3s ease;
|
193 |
+
}
|
194 |
+
|
195 |
+
/* μ΄λμ΄ ν
λ§ μ μ© */
|
196 |
@media (prefers-color-scheme: dark) {
|
197 |
.table-container {
|
198 |
border: 1px hidden #444;
|
|
|
217 |
.table-container tr:hover td {
|
218 |
background: #e7f9ef;
|
219 |
color: #000;
|
220 |
+
border: 1px solid #4caf50;
|
221 |
+
transform: scale(1.02);
|
222 |
+
transition: all 0.3s ease;
|
223 |
}
|
224 |
}
|
225 |
+
|
226 |
+
/* μΆκ°μ μΈ λ§μ°μ€μ€λ² ν¨κ³Ό */
|
227 |
+
.table-container tr:hover td {
|
228 |
+
text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2);
|
229 |
+
cursor: pointer;
|
230 |
+
}
|