Spaces:
Running
Running
File size: 14,039 Bytes
069fbff fe1e7ca ac83dfa 069fbff a4c127d 069fbff c91688b 069fbff a4c127d 069fbff a4c127d 069fbff cf470eb efd20e3 6c69826 069fbff 64dd66c 6c69826 efd20e3 6c69826 efd20e3 6c69826 efd20e3 64dd66c 6c69826 069fbff 64dd66c 6c69826 64dd66c cf470eb 6c69826 069fbff 6ac33e3 069fbff bddbb35 069fbff 6ac33e3 069fbff c91688b 069fbff c91688b 6ac33e3 069fbff 6ac33e3 069fbff 6ac33e3 ac83dfa 069fbff 6ac33e3 069fbff 6ac33e3 069fbff 358e378 069fbff 358e378 6ac33e3 358e378 7e38dda 7255c91 7fd3b80 7255c91 358e378 ac83dfa 7e38dda ac83dfa 7255c91 ac83dfa ee455e6 ac83dfa a1ad9ef fd37a06 e5caac6 c431242 fd37a06 a1ad9ef ac83dfa fd37a06 c431242 ac83dfa fd37a06 a1ad9ef 7fd3b80 a1ad9ef ac83dfa 7fd3b80 a1ad9ef ac83dfa 7fd3b80 c431242 7fd3b80 7ca78bc 7fd3b80 ac83dfa 069fbff ac83dfa 069fbff ac83dfa 5e2fce2 ac83dfa 069fbff 6ac33e3 069fbff 84a6a31 069fbff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import math
import FinanceDataReader as fdr
import yfinance as yf
from concurrent.futures import ThreadPoolExecutor
from modules.utils import load_css, get_currency_symbol, format_quantity, format_value, current_time
from collections import defaultdict
def parse_input(holdings, cash_amount):
try:
lines = holdings.strip().split(',')
stock_inputs = []
total_target_ratio = 0
# ์ข
๋ชฉ ์ ๋ณด๋ฅผ ์ ์ฅํ ๋์
๋๋ฆฌ
stock_dict = {}
for line in lines:
parts = line.split()
if len(parts) == 4:
stock_code, currency_code, quantity_expr, target_ratio_expr = parts
quantity = float(eval(quantity_expr.replace(' ', '')))
if target_ratio_expr.strip() == '[]':
target_ratio = 0
else:
target_ratio = float(eval(target_ratio_expr.strip('[]').replace(' ', '')))
# ์ข
๋ชฉ ์ฝ๋๊ฐ ์ด๋ฏธ ๋์
๋๋ฆฌ์ ์กด์ฌํ๋ ๊ฒฝ์ฐ, ์๋๊ณผ ๋ชฉํ ๋น์จ์ ํฉ์ฐ
if stock_code in stock_dict:
stock_dict[stock_code]['quantity'] += quantity
stock_dict[stock_code]['target_ratio'] += target_ratio
else:
stock_dict[stock_code] = {
'currency_code': currency_code.upper(),
'quantity': quantity,
'target_ratio': target_ratio
}
total_target_ratio += target_ratio
stock_inputs = [(details['currency_code'], stock_code, details['quantity'], details['target_ratio'])
for stock_code, details in stock_dict.items()]
return stock_inputs, cash_amount
except Exception as e:
raise ValueError(f"Input parsing error: {e}")
# def get_portfolio_exchange_rate(currency_code, main_currency):
# try:
# if main_currency.lower() == 'krw':
# if currency_code.upper() != 'KRW':
# fx_ticker = f"FRED:DEXKOUS" if currency_code.upper() == 'USD' else None
# if not fx_ticker:
# raise ValueError(f"<p style='color: red;'>Unsupported currency pair for KRW: {currency_code}</p>")
# exchange_rate_data = fdr.DataReader(fx_ticker)
# if not exchange_rate_data.empty:
# return exchange_rate_data['DEXKOUS'].iloc[-1]
# else:
# raise ValueError(f"<p style='color: red;'>Failed to retrieve exchange rate data for {currency_code} to KRW</p>")
# else:
# return 1.0 # KRW to KRW๋ ํ์จ์ด 1๋ก ๊ณ ์ ๋จ
# else:
# if currency_code.lower() == main_currency.lower():
# return 1.0
# ticker = f"{currency_code.upper()}{main_currency.upper()}=X"
# data = yf.download(ticker, period='1d', progress=False)
# if not data.empty:
# return data['Close'].iloc[0]
# else:
# raise ValueError(f"<p style='color: red;'>Failed to retrieve exchange rate data for ticker: {ticker}</p>")
# except Exception as e:
# raise ValueError(f"<p style='color: red;'>Exchange rate retrieval error: {e}</p>")
import pandas_datareader.data as web
import datetime
def get_portfolio_exchange_rate(currency_code, main_currency):
try:
if main_currency.lower() == 'krw':
if currency_code.upper() != 'KRW':
if currency_code.upper() == 'USD':
fx_ticker = 'DEXKOUS'
else:
raise ValueError(f"<p style='color: red;'>Unsupported currency pair for KRW: {currency_code}</p>")
start = datetime.datetime.now() - datetime.timedelta(days=30)
end = datetime.datetime.now()
exchange_rate_data = web.DataReader(fx_ticker, 'fred', start, end)
if exchange_rate_data.empty:
raise ValueError(f"<p style='color: red;'>No data available for {fx_ticker}</p>")
return exchange_rate_data['DEXKOUS'].iloc[-1]
else:
return 1.0 # KRW to KRW๋ ํ์จ์ด 1๋ก ๊ณ ์ ๋จ
else:
if currency_code.lower() == main_currency.lower():
return 1.0
ticker = f"{currency_code.upper()}{main_currency.upper()}=X"
data = yf.download(ticker, period='1d', progress=False)
if data.empty:
raise ValueError(f"<p style='color: red;'>No exchange rate data for ticker: {ticker}</p>")
return data['Close'].iloc[0]
except Exception as e:
raise ValueError(f"<p style='color: red;'>Exchange rate retrieval error: {e}</p>")
def get_portfolio_exchange_reflected_stock_price(stock_code, currency_code, main_currency):
try:
new_price = get_portfolio_current_stock_price(stock_code)
exchange_rate = get_portfolio_exchange_rate(currency_code, main_currency)
return new_price * exchange_rate
except Exception as e:
raise ValueError(f"<p style='color: red;'>Exchange reflected stock price error: {e}</p>")
def get_portfolio_current_stock_price(stock_code):
try:
# ํ๊ตญ ์ฃผ์ ์ฝ๋๊ฐ ์ซ์๋ง ์๋์ง ํ์ธ (ํ๊ตญ ์ฃผ์์ ๋ณดํต ์ซ์ ์ฝ๋)
if stock_code.isdigit():
df = fdr.DataReader(stock_code)
return df['Close'].iloc[-1]
else:
# ํ๊ตญ ์ธ ์ฃผ์์ yfinance๋ก ์กฐํ
stock = yf.Ticker(stock_code)
df = stock.history(period="1d")
return df['Close'].iloc[-1]
except Exception as e:
raise ValueError(f"<p style='color: red;'>Current stock price retrieval error: {e}</p>")
def set_default_ratios_if_zero(target_ratios):
total_target_ratio = sum(target_ratios.values())
if total_target_ratio == 0:
num_stocks = len(target_ratios)
default_ratio = 1 / num_stocks
return {stock_code: default_ratio for stock_code in target_ratios}
return target_ratios
def build_portfolio(stock_inputs, main_currency):
portfolio = {}
target_ratios = {}
with ThreadPoolExecutor() as executor:
results = list(executor.map(lambda x: (x[1], get_portfolio_exchange_reflected_stock_price(x[1], x[0], main_currency), x[2], x[3], x[0]), stock_inputs))
total_value = 0
for stock_code, new_price, quantity, target_ratio, currency_code in results:
portfolio[stock_code] = {'quantity': quantity, 'price': new_price, 'currency': currency_code}
target_ratios[stock_code] = target_ratio
total_value += new_price * quantity
target_ratios = set_default_ratios_if_zero(target_ratios)
return portfolio, target_ratios, total_value
def generate_rebalancing_analysis(portfolio, target_ratios, total_value, main_currency, cash_amount, allow_selling):
css = load_css()
currency_symbol = get_currency_symbol(main_currency)
adjustments = []
new_total_value = cash_amount + total_value
total_target_ratio = sum(target_ratios.values())
target_ratios = set_default_ratios_if_zero(target_ratios)
for stock_code, stock_data in portfolio.items():
current_value = stock_data['price'] * stock_data['quantity']
target_ratio = target_ratios.get(stock_code, 0)
target_weight = target_ratio / total_target_ratio
target_value = new_total_value * target_weight
difference = target_value - current_value
# ๋งค๋ ํ์ฉ ์ฌ๋ถ์ ๋ฐ๋ฅธ trade_value ๊ณ์ฐ
if allow_selling:
trade_value = difference
else:
# ํ๊ธ ๋ฐ ์ข
๋ชฉ๋ณ trade_value ๊ณ์ฐ
positive_differences = [
new_total_value * (target_ratios.get(code, 0) / total_target_ratio) - (data['price'] * data['quantity'])
for code, data in portfolio.items()
]
total_positive_difference = sum(max(d, 0) for d in positive_differences)
if total_positive_difference > 0:
trade_value = max(difference, 0) * cash_amount / total_positive_difference
else:
trade_value = 0
# ๋งค์, ๋งค๋ ์ฌ๋ถ ๊ฒฐ์
trade_quantity = trade_value / stock_data['price']
Buy_or_Sell = ""
if trade_quantity > 0:
Buy_or_Sell = f"<span class='buy-sell buy'>Buy</span>"
elif trade_quantity < 0:
Buy_or_Sell = f"<span class='buy-sell sell'>Sell</span>"
else:
Buy_or_Sell = f"<span></span>"
# highlight-sky ์ ์ฉ ์ฌ๋ถ ๊ฒฐ์
trade_value_display = f"{format_value(trade_value)}" if trade_value != 0 else ""
trade_quantity_display = f"{format_quantity(trade_quantity)}" if trade_quantity != 0 else ""
new_value = current_value + trade_value
new_quantity = stock_data['quantity'] + trade_quantity
adjustments.append({
'difference': difference,
'current_value': current_value,
'target_ratio': target_ratio,
'current_value_pct': current_value / total_value,
'trade_quantity': trade_quantity,
'stock_code': stock_code,
'price': stock_data['price'],
'new_value': new_value,
"Buy_or_Sell": Buy_or_Sell,
'trade_value': trade_value,
'old_quantity': stock_data['quantity'],
'new_quantity': new_quantity,
'target_weight': target_weight,
'currency': stock_data['currency'],
'new_value_pct': new_value / new_total_value,
'trade_value_display': trade_value_display,
'trade_quantity_display': trade_quantity_display
})
# HTML ์์ฑ
rebalancing_analysis = css + f"""
<div>
<div class='table-container'>
<table>
<thead>
<tr>
<th colspan="1"></th>
<th colspan="2" class="table-header-bg-before">Your Current Portfolio (Before Trades)</th>
<th colspan="1"></th>
<th colspan="4" style='text-align: center'>Trades to Re-Balance Your Portfolio</th>
<th colspan="2" class="table-header-bg-after">Your Adjusted Portfolio (After Trades)</th>
</tr>
<tr>
<th>Stock Code</th>
<th class="table-header-bg-before">Total Value - {main_currency} {currency_symbol}</th>
<th class="table-header-bg-before">% Asset Allocation</th>
<th style='text-align: center !important;'>Your Target Asset Allocation %</th>
<th>Buy or Sell?</th>
<th>Trade Amount - {main_currency} {currency_symbol}</th>
<th>Current Price per Share - {main_currency} {currency_symbol}</th>
<th>Estimated # of Shares to Buy or Sell</th>
<th class="table-header-bg-after">Total Value - {main_currency} {currency_symbol}</th>
<th class="table-header-bg-after">% Asset Allocation</th>
</tr>
<tr style="font-weight: bold;">
<td style='text-align: left !important;'>Total</td>
<td>{format_value(sum(adj['current_value'] for adj in adjustments))}</td>
<td>{sum(adj['current_value'] for adj in adjustments) / total_value * 100:.1f}%</td>
<td></td>
<td></td>
<td>{format_value(sum(adj['trade_value'] for adj in adjustments))}</td>
<td></td>
<td></td>
<td>{format_value(sum(adj['new_value'] for adj in adjustments))}</td>
<td>{sum(adj['new_value'] for adj in adjustments) / new_total_value * 100:.1f}%</td>
</tr>
</thead>
<tbody>
{''.join(
f"<tr>"
f"<td style='text-align: left !important;'>{adj['stock_code'].upper()}</td>"
f"<td>{format_value(adj['current_value'])}</td>"
f"<td>{adj['current_value_pct'] * 100:.1f}%</td>"
f"<td class='table-data-bg-edit' style='text-align: center !important;'>{adj['target_weight'] * 100:.0f}%</td>"
f"<td style='text-align: center !important;'>{adj['Buy_or_Sell']}</td>"
f"<td class='table-data-bg-sky'>{adj['trade_value_display']}</td>"
f"<td>{adj['price']:,.2f}</td>"
f"<td class='table-data-bg-sky'>{adj['trade_quantity_display']}</td>"
f"<td>{format_value(adj['new_value'])}</td>"
f"<td>{adj['new_value_pct'] * 100:.1f}%</td>"
f"</tr>"
for adj in adjustments
)}
</tbody>
</table>
</div>
<br>
</div>
"""
return rebalancing_analysis
def rebalancing_tool(main_currency, holdings, cash_amount, allow_selling):
try:
stock_inputs, cash_amount = parse_input(holdings, cash_amount)
portfolio, target_ratios, total_value = build_portfolio(stock_inputs, main_currency)
rebalancing_analysis = generate_rebalancing_analysis(portfolio, target_ratios, total_value, main_currency, cash_amount, allow_selling)
return rebalancing_analysis
except Exception as e:
return f"<p style='color: red;'>An error occurred: {e}</p>"
|