File size: 13,410 Bytes
48b95e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import math
import FinanceDataReader as fdr
import yfinance as yf
from concurrent.futures import ThreadPoolExecutor
from modules.utils import load_css, get_currency_symbol, format_quantity, plot_donut_chart, format_value, current_time
from collections import defaultdict
def parse_input(holdings, cash_amount):
try:
lines = holdings.strip().split(',')
stock_inputs = []
total_target_ratio = 0
for line in lines:
parts = line.split()
if len(parts) == 4:
stock_code, currency_code, quantity_expr, target_ratio_expr = parts
quantity = float(eval(quantity_expr.replace(' ', '')))
if target_ratio_expr.strip() == '[]':
target_ratio = 0
else:
target_ratio = float(eval(target_ratio_expr.strip('[]').replace(' ', '')))
stock_inputs.append((currency_code.upper(), stock_code, quantity, target_ratio))
total_target_ratio += target_ratio
return stock_inputs, cash_amount
except Exception as e:
raise ValueError(f"Input parsing error: {e}")
def get_portfolio_exchange_rate(currency_code, main_currency):
try:
if currency_code.lower() == main_currency.lower():
return 1.0
ticker = f"{currency_code.upper()}{main_currency.upper()}=X"
data = yf.download(ticker, period='1d', progress=False)
if not data.empty:
return data['Close'].iloc[0]
else:
raise ValueError("<p style='color: red;'>Failed to retrieve exchange rate data.</p>")
except Exception as e:
raise ValueError(f"<p style='color: red;'>Exchange rate retrieval error: {e}</p>")
def get_portfolio_exchange_reflected_stock_price(stock_code, currency_code, main_currency):
try:
new_price = get_portfolio_current_stock_price(stock_code)
exchange_rate = get_portfolio_exchange_rate(currency_code, main_currency)
return new_price * exchange_rate
except Exception as e:
raise ValueError(f"<p style='color: red;'>Exchange reflected stock price error: {e}</p>")
def get_portfolio_current_stock_price(stock_code):
try:
df = fdr.DataReader(stock_code)
return df['Close'].iloc[-1]
except Exception as e:
raise ValueError(f"<p style='color: red;'>Current stock price retrieval error: {e}</p>")
def set_default_ratios_if_zero(target_ratios):
total_target_ratio = sum(target_ratios.values())
if total_target_ratio == 0:
num_stocks = len(target_ratios)
default_ratio = 1 / num_stocks
return {stock_code: default_ratio for stock_code in target_ratios}
return target_ratios
def build_portfolio(stock_inputs, main_currency):
portfolio = {}
target_ratios = {}
with ThreadPoolExecutor() as executor:
results = list(executor.map(lambda x: (x[1], get_portfolio_exchange_reflected_stock_price(x[1], x[0], main_currency), x[2], x[3], x[0]), stock_inputs))
total_value = 0
for stock_code, new_price, quantity, target_ratio, currency_code in results:
portfolio[stock_code] = {'quantity': quantity, 'price': new_price, 'currency': currency_code}
target_ratios[stock_code] = target_ratio
total_value += new_price * quantity
target_ratios = set_default_ratios_if_zero(target_ratios)
return portfolio, target_ratios, total_value
def generate_portfolio_info(portfolio, total_value, main_currency):
css = load_css()
currency_symbol = get_currency_symbol(main_currency)
# ๋ณด์ ์ข
๋ชฉ๋ณ ์ด์ก์ ๊ณ์ฐํฉ๋๋ค.
holdings_totals = {
stock_code: {
'value': stock['price'] * stock['quantity'],
'weight': (stock['price'] * stock['quantity'] / total_value)
}
for stock_code, stock in portfolio.items()
}
# ํตํ๋ณ ์ด์ก์ ๊ณ์ฐํฉ๋๋ค.
currency_totals = defaultdict(lambda: {'value': 0, 'weight': 0})
for stock in portfolio.values():
currency = stock['currency']
value = stock['price'] * stock['quantity']
currency_totals[currency]['value'] += value
currency_totals[currency]['weight'] += value / total_value
# ํ์ฌ ๋น์ค์ ์ฌ์ฉํ์ฌ ํฌํธํด๋ฆฌ์ค ํธ๋ฆฌ๋งต ์ฐจํธ๋ฅผ ์์ฑํฉ๋๋ค.
currunt_weights = {stock_code: details['weight'] for stock_code, details in holdings_totals.items()}
currunt_weights_chart = plot_donut_chart(currunt_weights)
currency_weights = {currency: details['weight'] for currency, details in currency_totals.items()}
currency_weights_chart = plot_donut_chart(currency_weights)
# HTML ์์ฑ
portfolio_info = css + f"""
<div class="wrap-text">
<h3>Your Portfolio Holdings</h3>
{currunt_weights_chart}
<br>
<div class='table-container wrap-text'>
<table>
<thead>
<tr><th>Stock Code</th><th>Current Weight (%)</th><th>Current Value</th></tr>
</thead>
<tbody>
{''.join(
f"<tr><td>{stock_code.upper()}</td><td>{details['weight'] * 100:.1f}%</td><td>{currency_symbol}{format_value(details['value'])}</td></tr>"
for stock_code, details in holdings_totals.items()
)}
</tbody>
</table>
</div>
<br>
</div>
"""
# <br>
# <h3>Your Portfolio by Currency</h3>
# {currency_weights_chart}
# <br>
# <div class='table-container wrap-text'>
# <table>
# <thead>
# <tr><th>Currency</th><th>Total Weight (%)</th><th>Total Value</th></tr>
# </thead>
# <tbody>
# {''.join(
# f"<tr><td>{currency.upper()}</td><td>{details['weight']* 100:.1f}%</td><td>{currency_symbol}{format_value(details['value'])}</td></tr>"
# for currency, details in currency_totals.items()
# )}
# </tbody>
# </table>
# </div>
return portfolio_info
def generate_rebalancing_analysis(portfolio, target_ratios, total_value, main_currency, cash_amount, allow_selling):
css = load_css()
currency_symbol = get_currency_symbol(main_currency)
adjustments = []
new_total_value = cash_amount + total_value
total_target_ratio = sum(target_ratios.values())
target_ratios = set_default_ratios_if_zero(target_ratios)
for stock_code, stock_data in portfolio.items():
current_value = stock_data['price'] * stock_data['quantity']
target_ratio = target_ratios.get(stock_code, 0)
target_weight = target_ratio / total_target_ratio
target_value = new_total_value * target_weight
difference = target_value - current_value
# Allow selling์ด false์ด๊ณ ํ๊ธ์ด ์์์ธ ๊ฒฝ์ฐ ๋งค๋๋ฅผ ๋ฐฉ์ง
if not allow_selling and (difference < 0 or cash_amount < 0):
trade_quantity = 0
else:
trade_quantity = difference / stock_data['price']
if trade_quantity > 0 and not allow_selling:
trade_quantity = min(trade_quantity, cash_amount / stock_data['price'])
trade_value = trade_quantity * stock_data['price']
new_quantity = trade_quantity + stock_data['quantity']
new_value = new_quantity * stock_data['price']
if trade_value > 0:
cash_amount -= trade_value
else:
cash_amount += abs(trade_value)
# ๊ฐ ํญ๋ชฉ๋ณ Buy_or_Sell ๊ฐ์ ๋ฃจํ ์์์ ์ ์
Buy_or_Sell = ""
if trade_quantity > 0:
Buy_or_Sell = f"<span class='buy-sell buy'>Buy</span>"
elif trade_quantity < 0:
Buy_or_Sell = f"<span class='buy-sell sell'>Sell</span>"
else:
Buy_or_Sell = f"<span></span>"
adjustments.append({
'difference': difference,
'current_value': current_value,
'target_ratio': target_ratio,
'current_value_pct': current_value / total_value,
'trade_quantity': trade_quantity,
'stock_code': stock_code,
'price': stock_data['price'],
'new_value': new_value,
"Buy_or_Sell": Buy_or_Sell,
'trade_value': trade_value,
'old_quantity': stock_data['quantity'],
'new_quantity': new_quantity,
'target_weight': target_weight,
'currency': stock_data['currency'],
'new_value_pct': new_value / new_total_value
})
# HTML ์์ฑ
rebalancing_analysis = css + f"""
<div class="wrap-text">
<div style="margin-bottom: 1.5rem;">
<div style="font-size: 1.5rem; margin-top: 1.5rem; margin-bottom: 1.5rem;">Re-Balancing Analysis | Your Portfolio Holdings as of {current_time}</div>
<span style='font-size: 1.5rem; font-weight: bold; color: #1678fb'>{currency_symbol}{format_value(sum(adj['new_value'] for adj in adjustments))} </span>
(After Trades)
</div>
<div class='table-container wrap-text'>
<table>
<thead>
<tr>
<th colspan="1"></th>
<th colspan="2" class="header-bg-before">Your Current Portfolio (Before Trades)</th>
<th colspan="1"></th>
<th colspan="5" style='text-align: center'>Trades to Re-Balance Your Portfolio</th>
<th colspan="2" class="header-bg-after">Your Adjusted Portfolio (After Trades)</th>
</tr>
<tr>
<th>Stock Code</th>
<th class="header-bg-before">Total Value - {main_currency} {currency_symbol}</th>
<th class="header-bg-before">% Asset Allocation</th>
<th>Your Target Asset Allocation %</th>
<th>Buy or Sell?</th>
<th>Trade Amount - {main_currency} {currency_symbol}</th>
<th>Current Price per Share - {main_currency} {currency_symbol}</th>
<th>Estimated # of Shares to Buy or Sell</th>
<th>Shares Before and After</th>
<th class="header-bg-after">Total Value - {main_currency} {currency_symbol}</th>
<th class="header-bg-after">% Asset Allocation</th>
</tr>
<tr style="font-weight: bold;">
<td>Total</td>
<td>{format_value(sum(adj['current_value'] for adj in adjustments))}</td>
<td>{sum(adj['current_value'] for adj in adjustments) / total_value * 100:.1f}%</td>
<td></td>
<td></td>
<td>{format_value(sum(adj['trade_value'] for adj in adjustments))}</td>
<td></td>
<td></td>
<td></td>
<td>{format_value(sum(adj['new_value'] for adj in adjustments))}</td>
<td>{sum(adj['new_value'] for adj in adjustments) / new_total_value * 100:.1f}%</td>
</tr>
</thead>
<tbody>
{''.join(
f"<tr>"
f"<td>{adj['stock_code'].upper()}</td>"
f"<td>{format_value(adj['current_value'])}</td>"
f"<td>{adj['current_value_pct'] * 100:.1f}%</td>"
f"<td><span class='highlight-edit'>{adj['target_weight'] * 100:.1f}%</span></td>"
f"<td>{adj['Buy_or_Sell']}</td>"
f"<td><span class='highlight-sky'>{format_value(adj['trade_value'])}</span></td>"
f"<td>{adj['price']:,.2f}</td>"
f"<td><span class='highlight-sky'>{format_quantity(adj['trade_quantity'])}</span></td>"
f"<td>{format_quantity(adj['old_quantity'])} โ {format_quantity(adj['new_quantity'])}</td>"
f"<td>{format_value(adj['new_value'])}</td>"
f"<td>{adj['new_value_pct'] * 100:.1f}%</td>"
f"</tr>"
for adj in adjustments
)}
</tbody>
</table>
</div>
<br>
</div>
"""
return rebalancing_analysis
def rebalancing_tool(main_currency, holdings, cash_amount, allow_selling):
try:
stock_inputs, cash_amount = parse_input(holdings, cash_amount)
portfolio, target_ratios, total_value = build_portfolio(stock_inputs, main_currency)
portfolio_info = generate_portfolio_info(portfolio, total_value, main_currency)
rebalancing_analysis = generate_rebalancing_analysis(portfolio, target_ratios, total_value, main_currency, cash_amount, allow_selling)
return portfolio_info + rebalancing_analysis
except Exception as e:
return f"<p style='color: red;'>An error occurred: {e}</p>"
|