Spaces:
Sleeping
Sleeping
File size: 25,620 Bytes
db90530 8ed2a14 db90530 8ed2a14 db90530 a0138b8 db90530 a0138b8 db90530 a0138b8 db90530 a0138b8 dbbd0b8 a0138b8 db90530 a0138b8 db90530 a0138b8 db90530 a0138b8 db90530 8ed2a14 db90530 8ed2a14 db90530 8ed2a14 a0138b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
import math
import requests
from bs4 import BeautifulSoup
import FinanceDataReader as fdr
import ssl
import io
import base64
import gradio as gr
import matplotlib.pyplot as plt
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
import pytz
import yfinance as yf
from datetime import datetime, timedelta # timedelta μΆκ°
import gradio as gr
from gradio.components import Dataset
import matplotlib.pyplot as plt
import FinanceDataReader as fdr
import gradio as gr
import pandas as pd
from concurrent.futures import ThreadPoolExecutor, as_completed
import io
import base64
# νκ΅ νμ€μ (KST) μκ°λ μ€μ
kst = pytz.timezone('Asia/Seoul')
# SSL μΈμ¦μ κ²μ¦ λΉνμ±ν
ssl._create_default_https_context = ssl._create_unverified_context
def parse_input(text, cash_amount, cash_ratio):
lines = text.strip().split(',')
stock_inputs = []
total_target_weight = 0
for line in lines:
parts = line.split()
if len(parts) == 4:
stock_code, currency_code, quantity_expr, target_weight_expr = parts
quantity = math.floor(eval(quantity_expr.replace(' ', '')))
target_weight = eval(target_weight_expr.replace(' ', ''))
target_ratio = (1 - cash_ratio / 100) * target_weight
stock_inputs.append((currency_code, stock_code, quantity, target_weight, target_ratio))
total_target_weight += target_weight
cash_amount = math.floor(cash_amount) if cash_amount else 0
krw_cash = {'amount': cash_amount, 'target_weight': cash_ratio / 100.0}
stock_total_weight = total_target_weight
for i in range(len(stock_inputs)):
stock_inputs[i] = (stock_inputs[i][0], stock_inputs[i][1], stock_inputs[i][2], stock_inputs[i][3], (1 - krw_cash['target_weight']) * stock_inputs[i][3] / stock_total_weight)
return stock_inputs, krw_cash
def get_exchange_rate(currency_code):
if currency_code.lower() == 'krw':
return 1.0
ticker = f"{currency_code.upper()}KRW=X"
data = yf.download(ticker, period='1d')
if not data.empty:
return data['Close'].iloc[0]
else:
raise ValueError("Failed to retrieve exchange rate data.")
def get_exchange_reflected_stock_price(stock_code, currency_code):
new_price = get_current_stock_price(stock_code)
exchange_rate = get_exchange_rate(currency_code)
return math.floor(new_price * exchange_rate)
def get_current_stock_price(stock_code):
df = fdr.DataReader(stock_code)
return df['Close'].iloc[-1]
def build_portfolio(stock_inputs, krw_cash):
portfolio = {}
target_weights = {}
with ThreadPoolExecutor() as executor:
results = executor.map(lambda x: (x[1], get_exchange_reflected_stock_price(x[1], x[0]), x[2], x[3], x[4], x[0]), stock_inputs)
for stock_code, new_price, quantity, target_weight, target_ratio, currency_code in results:
portfolio[stock_code] = {'quantity': quantity, 'price': new_price, 'target_weight': target_weight, 'currency': currency_code}
target_weights[stock_code] = target_ratio
return portfolio, target_weights, krw_cash
def format_quantity(quantity):
if quantity < 0:
return f"({-quantity:,})"
else:
return f"{quantity:,}"
def get_portfolio_rebalancing_info(portfolio, target_weights, krw_cash):
with open('portfolio.html', 'r', encoding='utf-8') as file:
css = file.read()
kst = pytz.timezone('Asia/Seoul')
current_time = datetime.now(kst).strftime("%I:%M %p %b-%d-%Y")
total_value = sum(stock['price'] * stock['quantity'] for stock in portfolio.values()) + krw_cash['amount']
total_new_stock_value = 0
total_trade_value = 0
adjustments = []
# Calculate current weights and values
current_weights = {stock_code: (stock['price'] * stock['quantity'] / total_value) * 100 for stock_code, stock in portfolio.items()}
current_values = {stock_code: stock['price'] * stock['quantity'] for stock_code, stock in portfolio.items()}
# Include cash in current weights and values
current_weights['CASH'] = (krw_cash['amount'] / total_value) * 100
current_values['CASH'] = krw_cash['amount']
# Sort stocks by current weight in descending order
sorted_stocks = sorted(current_weights.items(), key=lambda x: x[1], reverse=True)
# Display current weights and values section
current_info_html = "<h3>Your Portfolio Holdings</h3><div class='table-container'><table style='border-collapse: collapse;'>"
current_info_html += "<thead><tr><th style='border: 1px hidden #ddd; text-align: center;'>Stock Code</th><th style='border: 1px hidden #ddd; text-align: center;'>Current Weight (%)</th><th style='border: 1px hidden #ddd; text-align: center;'>Current Value</th></tr></thead><tbody>"
for stock_code, weight in sorted_stocks:
current_info_html += (
f"<tr>"
f"<td style='border: 1px hidden #ddd; text-align: center;'>{stock_code.upper()}</td>"
f"<td style='border: 1px hidden #ddd; text-align: center;'>{weight:.1f}%</td>"
f"<td style='border: 1px hidden #ddd; text-align: center;'>β©{current_values[stock_code]:,.0f}</td>"
f"</tr>"
)
current_info_html += "</tbody></table></div><br>"
for stock_code, stock_data in portfolio.items():
current_value = stock_data['price'] * stock_data['quantity']
target_value = total_value * target_weights.get(stock_code, 0)
difference = target_value - current_value
trade_quantity = math.floor(difference / stock_data['price']) if difference > 0 else -math.ceil(-difference / stock_data['price'])
new_quantity = trade_quantity + stock_data['quantity']
new_value = new_quantity * stock_data['price']
trade_value = trade_quantity * stock_data['price']
total_trade_value += abs(trade_value)
total_new_stock_value += new_value
current_value_pct = (current_value / total_value) * 100
new_value_pct = (new_value / total_value) * 100
adjustments.append((difference, current_value, target_value, current_value_pct, trade_quantity, stock_code, stock_data['price'], new_value, trade_value, stock_data['quantity'], new_quantity, target_weights[stock_code], new_value_pct, stock_data['target_weight'], stock_data['currency']))
krw_new_amount = total_value - total_new_stock_value
krw_target_value = total_value * krw_cash['target_weight']
krw_difference = krw_new_amount - krw_cash['amount']
trade_quantity = krw_difference
new_quantity = krw_cash['amount'] + trade_quantity
new_value = new_quantity
trade_value = trade_quantity
current_value = krw_cash['amount']
current_value_pct = (current_value / total_value) * 100
new_value_pct = (new_value / total_value) * 100
adjustments.append((krw_difference, current_value, krw_target_value, current_value_pct, trade_quantity, 'CASH', 1, new_value, trade_value, krw_cash['amount'], new_quantity, krw_cash['target_weight'], new_value_pct, '', 'KRW'))
portfolio_info = css + f"""
<div><br>
<p><span style='font-size: 1.6rem; font-weight: bold;'>β©{total_value:,.0f}</span> as of <span style='color: #6e6e73;'>{current_time}</span></p>
<br></div>
"""
currency_totals = {stock_data['currency']: {'amount': 0, 'weight': 0} for stock_data in portfolio.values()}
for stock_code, stock_data in portfolio.items():
currency = stock_data['currency']
current_value = stock_data['price'] * stock_data['quantity']
currency_totals[currency]['amount'] += current_value
currency_totals[currency]['weight'] += current_value / total_value
currency_totals['CASH'] = {'amount': krw_cash['amount'], 'weight': krw_cash['amount'] / total_value}
sorted_currencies = sorted(currency_totals.items(), key=lambda x: x[1]['weight'], reverse=True)
currency_table = "<h3>Your Portfolio by Currency</h3><div class='table-container'><table style='border-collapse: collapse;'>"
currency_table += "<thead><tr><th style='border: 1px hidden #ddd; text-align: center;'>Currency</th><th style='border: 1px hidden #ddd; text-align: center;'>Total Weight (%)</th><th style='border: 1px hidden #ddd; text-align: center;'>Total Value</th></tr></thead><tbody>"
for currency, data in sorted_currencies:
currency_table += (
f"<tr>"
f"<td style='border: 1px hidden #ddd; text-align: center;'>{currency.upper()}</td>"
f"<td style='border: 1px hidden #ddd; text-align: center;'>{data['weight'] * 100:.1f}%</td>"
f"<td style='border: 1px hidden #ddd; text-align: center;'>β©{data['amount']:,}</td>"
f"</tr>"
)
currency_table += "</tbody></table></div><br>"
result_message = portfolio_info + current_info_html + currency_table + "<h3>Re-Balancing Analysis</h3><div class='table-container'><table style='border-collapse: collapse;'>"
result_message += "<thead><tr><th style='border: 1px hidden #ddd; text-align: center;'>Stock Code</th><th style='border: 1px hidden #ddd; text-align: center;'>Target Weight</th><th style='border: 1px hidden #ddd; text-align: center;'>Target Ratio (%)</th><th style='border: 1px hidden #ddd; text-align: center;'>Buy or Sell?</th><th style='border: 1px hidden #ddd; text-align: center;'>Trade Amount</th><th style='border: 1px hidden #ddd; text-align: center;'>Current Price per Share</th><th style='border: 1px hidden #ddd; text-align: center;'>Estimated # of<br> Shares to Buy or Sell</th><th style='border: 1px hidden #ddd; text-align: center;'>Quantity of Units</th><th style='border: 1px hidden #ddd; text-align: center;'>Market Value</th><th style='border: 1px hidden #ddd; text-align: center;'>% Asset Allocation</th></tr></thead><tbody>"
for adj in adjustments:
difference, current_value, target_value, current_value_pct, trade_quantity, stock_code, price, new_value, trade_value, old_quantity, new_quantity, target_ratio, new_value_pct, target_weight, currency = adj
Buy_or_Sell = ""
if trade_quantity > 0:
Buy_or_Sell = f"<span class='buy-sell buy'>Buy</span>"
elif trade_quantity < 0:
Buy_or_Sell = f"<span class='buy-sell sell'>Sell</span>"
else:
Buy_or_Sell = f"<span></span>"
price_str = f"β©{price:,.0f}" if stock_code != 'CASH' else ''
target_weight_str = f"<span class='highlight-edit'>{target_weight}</span>" if stock_code != 'CASH' else ''
target_ratio_str = f"<span class='highlight-edit'>{target_ratio * 100:.1f}%</span>" if stock_code == 'CASH' else f"{target_ratio * 100:.1f}%"
old_quantity_str = f"{old_quantity:,.0f} β {new_quantity:,.0f}" if stock_code != 'CASH' else ''
trade_value_str = f"<span class='highlight-sky'>{format_quantity(trade_value)}</span>" if trade_value != 0 else ''
trade_quantity_str = (
f"<span class='highlight-sky'>{format_quantity(trade_quantity)}</span>"
if stock_code != 'CASH' and trade_value != 0 else ''
)
new_value_str = f"β©{new_value:,.0f}"
new_value_pct_str = f"{new_value_pct:.1f}%"
result_message += (
f"<tr>"
f"<td style='border: 1px hidden #ddd; text-align: center;'>{stock_code.upper()}</td>"
f"<td style='border: 1px hidden #ddd; text-align: center;'>{target_weight_str}</td>"
f"<td style='border: 1px hidden #ddd; text-align: center;'>{target_ratio_str}</td>"
f"<td style='border: 1px hidden #ddd; text-align: center;'>{Buy_or_Sell}</td>"
f"<td style='border: 1px hidden #ddd; text-align: center;'>{trade_value_str}</td>"
f"<td style='border: 1px hidden #ddd; text-align: center;'>{price_str}</td>"
f"<td style='border: 1px hidden #ddd; text-align: center;'>{trade_quantity_str}</td>"
f"<td style='border: 1px hidden #ddd; text-align: center;'>{old_quantity_str}</td>"
f"<td style='border: 1px hidden #ddd; text-align: center;'>{new_value_str}</td>"
f"<td style='border: 1px hidden #ddd; text-align: center;'>{new_value_pct_str}</td>"
f"</tr>"
)
result_message += "</tbody></table></div>"
return result_message
def rebalancing_tool(user_input, cash_amount, cash_ratio):
try:
stock_inputs, krw_cash = parse_input(user_input, cash_amount, cash_ratio)
portfolio, target_weights, krw_cash = build_portfolio(stock_inputs, krw_cash)
result = get_portfolio_rebalancing_info(portfolio, target_weights, krw_cash)
return result
except Exception as e:
return str(e)
def get_stock_prices(stock_code, days):
try:
df = fdr.DataReader(stock_code, end=pd.Timestamp.now().date(), data_source='yahoo')
df = df[df.index >= df.index.max() - pd.DateOffset(days=days)] # μ΅κ·Ό daysμΌ λ°μ΄ν°λ‘ μ ν
return df['Close']
except Exception as e:
print(f"Failed to fetch data for {stock_code}: {e}")
return None
def plot_stock_prices(stock_codes, days):
# μ£Όμ κ·Έλν μμ±μ μν λ³λ ¬ μ²λ¦¬
stock_prices = {}
with ThreadPoolExecutor() as executor:
futures = {executor.submit(get_stock_prices, stock_code.strip(), int(days)): stock_code.strip() for stock_code in stock_codes.split(',')}
for future in as_completed(futures):
stock_code = futures[future]
try:
prices = future.result()
if prices is not None:
stock_prices[stock_code] = prices
except Exception as e:
print(f"Failed to fetch data for {stock_code}: {e}")
# κ° μ£Όμμ λν κ·Έλνλ₯Ό κ·Έλ¦Ό
plt.figure(figsize=(10, 6))
for stock_code, prices in stock_prices.items():
relative_prices = prices / prices.iloc[0] # 첫 λ²μ§Έ λ°μ΄ν° ν¬μΈνΈλ₯Ό κΈ°μ€μΌλ‘ μλμ κ°κ²© κ³μ°
plt.plot(prices.index, relative_prices, label=stock_code.upper()) # μ£Όμ μ½λλ₯Ό λλ¬Έμλ‘ νμ
plt.xlabel('Date')
plt.ylabel('Relative Price (Normalized to 1)')
plt.title(f'Relative Stock Prices Over the Last {days} Days')
plt.legend()
# κ·Έλνλ₯Ό HTMLλ‘ λ³ννμ¬ λ°ν
html_graph = io.BytesIO()
plt.savefig(html_graph, format='png', dpi=300)
html_graph.seek(0)
graph_encoded = base64.b64encode(html_graph.getvalue()).decode()
graph_html = f'<img src="data:image/png;base64,{graph_encoded}"/>'
return graph_html
def cost_averaging(old_avg_price, old_quantity, new_price, new_quantity):
# μ
λ ₯κ°μ μ«μλ‘ λ³ν
old_avg_price = float(old_avg_price) if old_avg_price else 0.0
old_quantity = float(old_quantity) if old_quantity else 0.0
new_price = float(new_price) if new_price else 0.0
new_quantity = float(new_quantity) if new_quantity else 0.0
# νμ¬ ν¬μ κΈμ‘ κ³μ°
current_investment = old_avg_price * old_quantity
# μΆκ° ν¬μ κΈμ‘ κ³μ°
additional_investment = new_price * new_quantity
# μ΄ ν¬μ κΈμ‘
total_investment = current_investment + additional_investment
# μ΄ μ£Όμ μ
total_shares = old_quantity + new_quantity
# μ νκ· κ°κ²© κ³μ°
new_avg_price = total_investment / total_shares if total_shares != 0 else 0.0
# νμ¬ μμ΅λ₯ κ³μ°
current_return = (new_price - old_avg_price) / old_avg_price * 100 if old_avg_price != 0 else 0.0
# μλ‘μ΄ μμ΅λ₯ κ³μ°
new_return = (new_price / new_avg_price - 1 ) * 100 if new_avg_price != 0 else 0.0
return new_avg_price, total_shares, total_investment, current_return, new_return, additional_investment
def gradio_cost_averaging(old_avg_price, old_quantity, new_price, new_quantity):
with open('portfolio.html', 'r', encoding='utf-8') as file:
css = file.read()
# μ
λ ₯κ°μ μ«μλ‘ λ³ν
old_avg_price = float(old_avg_price) if old_avg_price else 0.0
old_quantity = float(old_quantity) if old_quantity else 0.0
new_price = float(new_price) if new_price else 0.0
new_quantity = float(new_quantity) if new_quantity else 0.0
new_avg_price, total_shares, total_investment, current_return, new_return, additional_investment = cost_averaging(old_avg_price, old_quantity, new_price, new_quantity)
current_return_class = ""
if current_return > 0:
current_return_class = f"<span style='color: #4caf50; font-weight: bold;'>{current_return:+,.2f}%</span>"
elif current_return < 0:
current_return_class = f"<span style='color: #f44336; font-weight: bold;'>{current_return:,.2f}%</span>"
else:
current_return_class = f"<span><strong>0</strong></span>"
new_return_class = ""
if new_return > 0:
new_return_class = f"<span style='color: #4caf50; font-weight: bold;'>{new_return:+,.2f}%</span>"
elif current_return < 0:
new_return_class = f"<span style='color: #f44336; font-weight: bold;'>{new_return:,.2f}%</span>"
else:
new_return_class = f"<span><strong>0</strong></span>"
# Construct the HTML string with the appropriate class
result_html = css+ f"""
<div style="box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); border-radius: 8px; padding: 48px; position: relative; width: 100%; padding: 24px;">
<div>
<div style="margin-bottom: 24px;">
<div style="font-size: 24px; margin-bottom: 24px;">Average Price</div>
<div style="font-size: 24px; font-weight: bold; color: #1c75bc;">
<span></span>
<span>{new_avg_price:,.0f}</span>
</div>
<hr style="margin: 24px 0;">
</div>
</div>
<div>
<div style="margin-bottom: 24px;">
<div style="font-size: 24px; margin-bottom: 24px;">Total Quantity</div>
<div style="font-size: 24px; font-weight: bold; color: #1c75bc;">
<span>{total_shares:,.0f}</span>
</div>
<hr style="margin: 24px 0;">
</div>
</div>
<div>
<div style="margin-bottom: 24px;">
<div style="font-size: 24px; margin-bottom: 24px;">Total Investment</div>
<div style="font-size: 24px; font-weight: bold; color: #1c75bc;">
<span></span>
<span>{total_investment:,.0f}</span>
</div>
<hr style="margin: 24px 0;">
</div>
</div>
<div style='display: flex; justify-content: space-around; align-items: center;'>
<div style='text-align: center;'>
<div style="margin-bottom: 24px;">
<div style="font-size: 24px; margin-bottom: 24px;"></div>
<div style="font-size: 24px; font-weight: bold; color: #1c75bc;">
<p></p>
<p>{current_return_class}</p>
<p>{old_avg_price:,.0f}</p>
</div>
</div>
</div>
<div style='text-align: center; margin-bottom: 24px; font-size: 24px;'>β</div>
<div style='text-align: center;'>
<div style="margin-bottom: 24px;">
<div style="font-size: 24px; margin-bottom: 24px;"></div>
<div style="font-size: 24px; font-weight: bold; color: #1c75bc;">
<p></p>
<p>{new_return_class}</p>
<p>{new_avg_price:,.0f}</p>
</div>
</div>
</div>
</div>
<p style='text-align: center;'>μ΄ μΆκ° κΈμ‘: <strong>{additional_investment:,.0f}</strong></p>
</div>
"""
return result_html
# Define the interface for the Portfolio tab
def portfolio_interface(input_text, cash_amount, cash_ratio):
result = rebalancing_tool(input_text, cash_amount, cash_ratio)
return result
portfolio_inputs = [
gr.Textbox(label="π₯ Holdings", lines=2, placeholder="Format: [stock code currency quantity target weight, ...]"),
gr.Number(label="πͺ΅ Cash", value=""),
gr.Slider(label="βοΈ Cash Ratio (%)", minimum=0, maximum=100, step=1)
]
portfolio_interface = gr.Interface(
fn=portfolio_interface,
inputs=portfolio_inputs,
outputs=gr.HTML(),
# examples = [
# ["458730 krw 571 8,\n368590 krw 80 2", 17172, 0],
# ["SCHD USD 400 8,\nQQQ USD 40 2", 1000000, 25],
# ["458730 krw 571 8,\n368590 krw 80 2,\nSCHD USD 400 8,\nQQQ USD 40 2", 1000000, 25]
# ],
live=True
)
# Define the interface for the Compare tab
def compare_interface(stock_codes, period):
result = plot_stock_prices(stock_codes, period)
return result
compare_inputs = [
gr.Textbox(label="π Stock Codes", lines=2, placeholder="Enter stock codes separated by comma (e.g., AAPL,GOOGL,MSFT)"),
gr.Number(label="π Period (days)", value=90)
]
compare_interface = gr.Interface(
fn=compare_interface,
inputs=compare_inputs,
outputs=gr.HTML(),
# examples = [
# ["SCHD,QQQ", 90],
# ["458730,368590", 90],
# ["AAPL,GOOGL,MSFT", 90]
# ],
live=False
)
# Define the interface for the Cost Averaging tab
def cost_averaging_interface(old_avg_price, old_quantity, new_price, new_quantity):
result = gradio_cost_averaging(old_avg_price, old_quantity, new_price, new_quantity)
return result
cost_averaging_inputs = [
gr.Number(label="Old Price", value=""),
gr.Number(label="Quantity", value=""),
gr.Number(label="New Price", value=""),
gr.Number(label="Quantity", value="")
]
cost_averaging_interface = gr.Interface(
fn=cost_averaging_interface,
inputs=cost_averaging_inputs,
outputs=gr.HTML(),
# examples = [
# [78.15, 6.024272, 77.11, 1]
# ],
live=True
)
# Combine all interfaces into a tabbed interface
with gr.Blocks(css='style.css') as demo:
with gr.Column(elem_id="col-container"):
with gr.Tabs():
with gr.TabItem("Portfolio"):
portfolio_interface.render()
with gr.TabItem("Compare"):
compare_interface.render()
with gr.TabItem("Cost Averaging"):
cost_averaging_interface.render()
with gr.TabItem("π About"):
gr.Markdown("""
# About This Application
Welcome to the Portfolio Management Tool! This application provides a comprehensive suite of tools to help you manage and analyze your investment portfolio. Below is a brief overview of each feature available in this tool.
## π Portfolio
**Description:**
This section allows you to analyze and rebalance your investment portfolio. You can input your current holdings, cash amount, and desired cash ratio, and the tool will calculate the necessary trades to achieve your target allocation.
**How to Use:**
1. Enter your holdings in the format: `[stock code currency quantity target weight]`.
2. Specify your cash amount and desired cash ratio.
3. Click the "Analyze Data" button to see the rebalancing analysis.
4. View the detailed breakdown of your current portfolio and suggested trades.
## π Compare
**Description:**
This feature enables you to compare the historical prices of multiple stocks over a specified period. It provides a visual comparison to help you understand the performance of different stocks.
**How to Use:**
1. Enter the stock codes separated by commas (e.g., AAPL, GOOGL, MSFT).
2. Specify the period in days for which you want to compare the stock prices.
3. Click the "Compare Stock Prices" button to generate the comparison graph.
4. View the relative price changes of the selected stocks over the chosen period.
## πΉ Cost Averaging
**Description:**
This section helps you calculate the new average price of a stock when you make additional purchases. It also provides insights into the current and new return rates based on your investments.
**How to Use:**
1. Enter the average price and quantity of your initial purchase in the "First Purchase" section.
2. Enter the price and quantity of your subsequent purchase in the "Second Purchase" section.
3. Click the "Calculate Cost Averaging" button to see the results.
4. View the new average price, total quantity, total investment, and return rates.
## π About
**Description:**
This section provides an overview of the application, explaining its features and how to use them. It serves as a guide for new users to understand the functionalities available in the tool.
**How to Use:**
Simply read through the information provided to get acquainted with the application's capabilities.
## Disclaimer
Please note that this tool is for informational purposes only and does not constitute financial advice. Always conduct your own research or consult with a financial advisor before making investment decisions.
---
We hope you find this tool useful for managing your investments. If you have any feedback or suggestions, feel free to reach out!
Happy Investing!
""")
demo.launch(share=True) |