import numpy as np from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from typing import Any def find_cluster_centroids(embeddings, max_k=10) -> Any: inertia = [] cluster_centroids = [] K = range(1, max_k+1) for k in K: kmeans = KMeans(n_clusters=k, random_state=0) kmeans.fit(embeddings) inertia.append(kmeans.inertia_) cluster_centroids.append({"k": k, "centroids": kmeans.cluster_centers_}) diffs = [inertia[i] - inertia[i+1] for i in range(len(inertia)-1)] optimal_centroids = cluster_centroids[diffs.index(max(diffs)) + 1]['centroids'] return optimal_centroids def find_closest_centroid(centroids: list, normed_face_embedding) -> list: try: centroids = np.array(centroids) normed_face_embedding = np.array(normed_face_embedding) similarities = np.dot(centroids, normed_face_embedding) closest_centroid_index = np.argmax(similarities) return closest_centroid_index, centroids[closest_centroid_index] except ValueError: return None