Spaces:
Running
Running
import numpy | |
import opennsfw2 | |
from PIL import Image | |
import cv2 # Add OpenCV import | |
import modules.globals # Import globals to access the color correction toggle | |
from modules.typing import Frame | |
MAX_PROBABILITY = 1.00 | |
# Preload the model once for efficiency | |
model = None | |
def predict_frame(target_frame: Frame) -> bool: | |
# Convert the frame to RGB before processing if color correction is enabled | |
if modules.globals.color_correction: | |
target_frame = cv2.cvtColor(target_frame, cv2.COLOR_BGR2RGB) | |
image = Image.fromarray(target_frame) | |
image = opennsfw2.preprocess_image(image, opennsfw2.Preprocessing.YAHOO) | |
global model | |
if model is None: | |
model = opennsfw2.make_open_nsfw_model() | |
views = numpy.expand_dims(image, axis=0) | |
_, probability = model.predict(views)[0] | |
return probability > MAX_PROBABILITY | |
def predict_image(target_path: str) -> bool: | |
return opennsfw2.predict_image(target_path) > MAX_PROBABILITY | |
def predict_video(target_path: str) -> bool: | |
_, probabilities = opennsfw2.predict_video_frames(video_path=target_path, frame_interval=100) | |
return any(probability > MAX_PROBABILITY for probability in probabilities) | |