Spaces:
Running
Running
import os | |
import shutil | |
from typing import Any | |
import insightface | |
import cv2 | |
import numpy as np | |
import modules.globals | |
from tqdm import tqdm | |
from modules.typing import Frame | |
from modules.cluster_analysis import find_cluster_centroids, find_closest_centroid | |
from modules.utilities import get_temp_directory_path, create_temp, extract_frames, clean_temp, get_temp_frame_paths | |
from pathlib import Path | |
FACE_ANALYSER = None | |
def get_face_analyser() -> Any: | |
global FACE_ANALYSER | |
if FACE_ANALYSER is None: | |
FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=modules.globals.execution_providers) | |
FACE_ANALYSER.prepare(ctx_id=0, det_size=(640, 640)) | |
return FACE_ANALYSER | |
def get_one_face(frame: Frame) -> Any: | |
face = get_face_analyser().get(frame) | |
try: | |
return min(face, key=lambda x: x.bbox[0]) | |
except ValueError: | |
return None | |
def get_many_faces(frame: Frame) -> Any: | |
try: | |
return get_face_analyser().get(frame) | |
except IndexError: | |
return None | |
def has_valid_map() -> bool: | |
for map in modules.globals.souce_target_map: | |
if "source" in map and "target" in map: | |
return True | |
return False | |
def default_source_face() -> Any: | |
for map in modules.globals.souce_target_map: | |
if "source" in map: | |
return map['source']['face'] | |
return None | |
def simplify_maps() -> Any: | |
centroids = [] | |
faces = [] | |
for map in modules.globals.souce_target_map: | |
if "source" in map and "target" in map: | |
centroids.append(map['target']['face'].normed_embedding) | |
faces.append(map['source']['face']) | |
modules.globals.simple_map = {'source_faces': faces, 'target_embeddings': centroids} | |
return None | |
def add_blank_map() -> Any: | |
try: | |
max_id = -1 | |
if len(modules.globals.souce_target_map) > 0: | |
max_id = max(modules.globals.souce_target_map, key=lambda x: x['id'])['id'] | |
modules.globals.souce_target_map.append({ | |
'id' : max_id + 1 | |
}) | |
except ValueError: | |
return None | |
def get_unique_faces_from_target_image() -> Any: | |
try: | |
modules.globals.souce_target_map = [] | |
target_frame = cv2.imread(modules.globals.target_path) | |
many_faces = get_many_faces(target_frame) | |
i = 0 | |
for face in many_faces: | |
x_min, y_min, x_max, y_max = face['bbox'] | |
modules.globals.souce_target_map.append({ | |
'id' : i, | |
'target' : { | |
'cv2' : target_frame[int(y_min):int(y_max), int(x_min):int(x_max)], | |
'face' : face | |
} | |
}) | |
i = i + 1 | |
except ValueError: | |
return None | |
def get_unique_faces_from_target_video() -> Any: | |
try: | |
modules.globals.souce_target_map = [] | |
frame_face_embeddings = [] | |
face_embeddings = [] | |
print('Creating temp resources...') | |
clean_temp(modules.globals.target_path) | |
create_temp(modules.globals.target_path) | |
print('Extracting frames...') | |
extract_frames(modules.globals.target_path) | |
temp_frame_paths = get_temp_frame_paths(modules.globals.target_path) | |
i = 0 | |
for temp_frame_path in tqdm(temp_frame_paths, desc="Extracting face embeddings from frames"): | |
temp_frame = cv2.imread(temp_frame_path) | |
many_faces = get_many_faces(temp_frame) | |
for face in many_faces: | |
face_embeddings.append(face.normed_embedding) | |
frame_face_embeddings.append({'frame': i, 'faces': many_faces, 'location': temp_frame_path}) | |
i += 1 | |
centroids = find_cluster_centroids(face_embeddings) | |
for frame in frame_face_embeddings: | |
for face in frame['faces']: | |
closest_centroid_index, _ = find_closest_centroid(centroids, face.normed_embedding) | |
face['target_centroid'] = closest_centroid_index | |
for i in range(len(centroids)): | |
modules.globals.souce_target_map.append({ | |
'id' : i | |
}) | |
temp = [] | |
for frame in tqdm(frame_face_embeddings, desc=f"Mapping frame embeddings to centroids-{i}"): | |
temp.append({'frame': frame['frame'], 'faces': [face for face in frame['faces'] if face['target_centroid'] == i], 'location': frame['location']}) | |
modules.globals.souce_target_map[i]['target_faces_in_frame'] = temp | |
# dump_faces(centroids, frame_face_embeddings) | |
default_target_face() | |
except ValueError: | |
return None | |
def default_target_face(): | |
for map in modules.globals.souce_target_map: | |
best_face = None | |
best_frame = None | |
for frame in map['target_faces_in_frame']: | |
if len(frame['faces']) > 0: | |
best_face = frame['faces'][0] | |
best_frame = frame | |
break | |
for frame in map['target_faces_in_frame']: | |
for face in frame['faces']: | |
if face['det_score'] > best_face['det_score']: | |
best_face = face | |
best_frame = frame | |
x_min, y_min, x_max, y_max = best_face['bbox'] | |
target_frame = cv2.imread(best_frame['location']) | |
map['target'] = { | |
'cv2' : target_frame[int(y_min):int(y_max), int(x_min):int(x_max)], | |
'face' : best_face | |
} | |
def dump_faces(centroids: Any, frame_face_embeddings: list): | |
temp_directory_path = get_temp_directory_path(modules.globals.target_path) | |
for i in range(len(centroids)): | |
if os.path.exists(temp_directory_path + f"/{i}") and os.path.isdir(temp_directory_path + f"/{i}"): | |
shutil.rmtree(temp_directory_path + f"/{i}") | |
Path(temp_directory_path + f"/{i}").mkdir(parents=True, exist_ok=True) | |
for frame in tqdm(frame_face_embeddings, desc=f"Copying faces to temp/./{i}"): | |
temp_frame = cv2.imread(frame['location']) | |
j = 0 | |
for face in frame['faces']: | |
if face['target_centroid'] == i: | |
x_min, y_min, x_max, y_max = face['bbox'] | |
if temp_frame[int(y_min):int(y_max), int(x_min):int(x_max)].size > 0: | |
cv2.imwrite(temp_directory_path + f"/{i}/{frame['frame']}_{j}.png", temp_frame[int(y_min):int(y_max), int(x_min):int(x_max)]) | |
j += 1 |