Spaces:
Running
Running
import numpy as np | |
from sklearn.cluster import KMeans | |
from sklearn.metrics import silhouette_score | |
from typing import Any | |
def find_cluster_centroids(embeddings, max_k=10) -> Any: | |
inertia = [] | |
cluster_centroids = [] | |
K = range(1, max_k+1) | |
for k in K: | |
kmeans = KMeans(n_clusters=k, random_state=0) | |
kmeans.fit(embeddings) | |
inertia.append(kmeans.inertia_) | |
cluster_centroids.append({"k": k, "centroids": kmeans.cluster_centers_}) | |
diffs = [inertia[i] - inertia[i+1] for i in range(len(inertia)-1)] | |
optimal_centroids = cluster_centroids[diffs.index(max(diffs)) + 1]['centroids'] | |
return optimal_centroids | |
def find_closest_centroid(centroids: list, normed_face_embedding) -> list: | |
try: | |
centroids = np.array(centroids) | |
normed_face_embedding = np.array(normed_face_embedding) | |
similarities = np.dot(centroids, normed_face_embedding) | |
closest_centroid_index = np.argmax(similarities) | |
return closest_centroid_index, centroids[closest_centroid_index] | |
except ValueError: | |
return None |