import gradio as gr import torch from transformers import AutoTokenizer import yaml from SmolLm3 import LlamaModel def generate_helper(model, idx, max_new_tokens, context_length, temperature=1.0, top_k=None, eos_token=None, device=None): model = model.to(device) idx = idx.to(device) model.eval() for _ in range(max_new_tokens): idx_cond = idx[:, -context_length:] with torch.no_grad(): logits, _ = model(idx_cond) # Unpack both logits and loss (ignore loss) logits = logits.view(idx_cond.shape[0], -1, model.config['vocab_size']) # Reshape to [batch, seq, vocab] # Get the logits for the last token only logits = logits[:, -1, :] # Shape: [batch_size, vocab_size] if top_k is not None: # top k sampling top_logits, top_pos = torch.topk(logits, top_k) min_logit = top_logits[:, -1].unsqueeze(-1) logits = torch.where(logits < min_logit, torch.tensor(float('-inf')).to(logits.device), logits) # temperature scaling if temperature > 0.0: logits /= temperature probs = torch.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1) else: idx_next = torch.argmax(logits, dim=-1, keepdim=True) if idx_next.item() == eos_token: break idx = torch.cat((idx, idx_next), dim=1) model.train() return idx def get_config(config_path): config = yaml.load(open(config_path, "r"), Loader=yaml.FullLoader) return config def load_model_from_checkpoint(config_path, checkpoint_path, device): config = get_config(config_path) model = LlamaModel(config['model']) checkpoint = torch.load(checkpoint_path, map_location=torch.device(device)) state_dict = checkpoint['model_state_dict'] state_dict = {k.replace('_orig_mod.', ''): v for k, v in state_dict.items()} model.load_state_dict(state_dict) return model def load_weights(config, weights_path, device): model = LlamaModel(config['model']) model.load_state_dict(torch.load(weights_path, map_location=torch.device(device))) return model def get_tokenizer(config): tokenizer_path = config['tokenizer']['tokenizer_name_or_path'] tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) tokenizer.pad_token = tokenizer.eos_token vocab_size = tokenizer.vocab_size return tokenizer, vocab_size def generate_text(model, tokenizer, input_text, max_new_tokens, context_length, temperature, top_k, eos_token, device): encoded_text = tokenizer.encode(input_text, return_tensors="pt").to(device) generated_text = generate_helper(model, idx=encoded_text, max_new_tokens=max_new_tokens, context_length=context_length, temperature=temperature, top_k=top_k, eos_token=eos_token, device=device) return tokenizer.decode(generated_text.squeeze(0)) # Initialize model and tokenizer def initialize_model(): config_path = "config_smollm2_135M.yaml" checkpoint_path = "/Users/chiragtagadiya/Documents/Final_training_before_stop_smolllm3/checkpoints/model_37000_steps_avg_loss_2.85920_optimizer_lr_0.00000003.pth" # Update this path weights_path = "model_weights_35000_step.pt" device = "cuda" if torch.cuda.is_available() else "cpu" # Load configuration config = get_config(config_path) # Load model # model = load_model_from_checkpoint(config_path, checkpoint_path, device) model = load_weights(config, weights_path, device) model.to(device) model.eval() # Load tokenizer tokenizer, vocab_size = get_tokenizer(config) return model, tokenizer, device def generate_response(prompt, max_new_tokens): generated_text = generate_text( model=model, tokenizer=tokenizer, input_text=prompt, max_new_tokens=max_new_tokens, context_length=256, temperature=0.9, top_k=2, eos_token=tokenizer.eos_token_id, device=device ) return generated_text # Initialize global variables model, tokenizer, device = initialize_model() # Create Gradio interface iface = gr.Interface( fn=generate_response, inputs=[ gr.Textbox( lines=3, placeholder="Enter your prompt here...", label="Input Prompt" ), gr.Slider( minimum=50, maximum=256, value=100, step=10, label="Max New Tokens" ) ], outputs=gr.Textbox( lines=5, label="Generated Text" ), title="SmolLM Text Generator", description="Enter a prompt and adjust the maximum number of tokens to generate text with SmolLM model." ) if __name__ == "__main__": iface.launch()