import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import SiLU import yaml # from gptdataloader import create_dataloader_v1 # from chapter5 import calc_loss_loader, calculate_loss_batch def _init_weights(module, std=0.041666666666666664): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) class RotaryPositionalEmbedding(nn.Module): """ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L240 Rotary Positional Embedding (RoPE) for transformers Implemntation derived from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py """ def __init__(self, dim: int, theta: float = 10000.0): super().__init__() self.dim = dim self.theta = theta def forward(self, x: torch.Tensor, seq_len: int) -> torch.Tensor: """ Apply rotary positional embedding to the input tensor. Args: x (torch.Tensor): Input tensor of shape # B, T, H, D seq_len (int): Sequence length. #T Returns: torch.Tensor: Output tensor with rotary positional embeddings applied. """ B, T, H, H_D = x.shape # Generate position indices position = torch.arange(T, dtype=torch.float32, device=x.device).unsqueeze(-1) # Generate frequencies freqs = torch.exp( torch.arange(0, H_D, 2, dtype=torch.float32, device=x.device) * -(torch.log(torch.tensor(self.theta)) / H_D) ) # Compute sinusoids sinusoid = position * freqs sin = torch.sin(sinusoid) cos = torch.cos(sinusoid) # Reshape sin and cos to match the input tensor's shape sin = sin.unsqueeze(0).unsqueeze(2) # Shape: (1, T, 1, D // 2) cos = cos.unsqueeze(0).unsqueeze(2) # Shape: (1, T, 1, D // 2) # Apply rotary embeddings x_rotated = x.clone() x_rotated[..., 0::2] = x[..., 0::2] * cos - x[..., 1::2] * sin x_rotated[..., 1::2] = x[..., 1::2] * cos + x[..., 0::2] * sin return x_rotated class LlamaAttention(nn.Module): """ (self_attn): LlamaAttention( (q_proj): Linear(in_features=576, out_features=576, bias=False) (k_proj): Linear(in_features=576, out_features=192, bias=False) (v_proj): Linear(in_features=576, out_features=192, bias=False) (o_proj): Linear(in_features=576, out_features=576, bias=False) ) """ def __init__(self, config, rotary_emb): super().__init__() self.config = config self.num_attention_heads = self.config['num_attention_heads'] self.hidden_size = self.config['hidden_size'] # Ensure the hidden size is divisible by the number of attention heads if self.hidden_size % self.num_attention_heads != 0: raise ValueError( f"hidden_size ({self.hidden_size}) must be divisible by num_attention_heads ({self.num_attention_heads})" ) self.num_key_value_heads = self.config['num_key_value_heads'] self.head_dim = self.hidden_size // self.num_attention_heads self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) # D,D self.k_proj = nn.Linear(self.hidden_size, self.head_dim*self.num_key_value_heads, bias=False) # D,D/H self.v_proj = nn.Linear(self.hidden_size, self.head_dim*self.num_key_value_heads, bias=False) # D,D/H self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) # D,D # Convert the mask to boolean type when creating it # self.register_buffer("mask", # torch.triu(torch.ones(self.config['max_position_embeddings'], # self.config['max_position_embeddings']), # diagonal=1)) # Convert to boolean self.rotary_pos_emb = rotary_emb def forward(self, x): B, T, C = x.size() q = self.q_proj(x) # B,T,D k = self.k_proj(x) # B,T,D/H v = self.v_proj(x) # B,T,D/H q = q.view(B, T, self.num_attention_heads, self.head_dim) # B,T,H,D k = k.view(B, T, self.num_key_value_heads, self.head_dim) # B,T,H,D v = v.view(B, T, self.num_key_value_heads, self.head_dim) # B,T,H,D q = q.transpose(1,2) # B,H,T,D k = k.transpose(1,2) # B,num_key_value_heads,T,D v = v.transpose(1,2) # B,num_key_value_heads,T,D # apply rotary positional embedding q = self.rotary_pos_emb(q, T) k = self.rotary_pos_emb(k, T) # Repeat k/v heads if num_key_value_heads < num_attention_heads if self.num_key_value_heads != self.num_attention_heads: k = k.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1) # B,kv_head,T,D -> B,H,T,D v = v.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1) # B,kv_head,T,D -> B,H,T,D # Manual attention Stats # Q(B,H,T,D) @K.T(B,H,D,T) = Q.K_T (B,H,T,T) # attn_scores = q @ k.transpose(-2,-1) # B,H,T,T # mask_bool = self.mask[:T,:T].bool() # T,T # attn_scores.masked_fill_(mask_bool, -torch.inf) # B,H,T,T # attn_weights = F.softmax(attn_scores/k.size(-1)**0.5, dim=-1) # B,H,T,T # context_vector = attn_weights @ v # B,H,T,T * B,H,T,D = B,H,T,D # context_vector = context_vector.transpose(1,2) # B,T,H,D # context_vector = context_vector.contiguous().view(B,T,C) # B,T,H,D -> B,T,D # Manual attention Stats ENDS # Scaled dot-product attention STARTS attn_out = F.scaled_dot_product_attention(q, k, v, is_causal=True) context_vector = attn_out.transpose(1,2).reshape(B,T,C) # Scaled dot-product attention ENDS context_vector = self.o_proj(context_vector) return context_vector class LlamaMLP(nn.Module): """ (mlp): LlamaMLP( (gate_proj): Linear(in_features=576, out_features=1536, bias=False) (up_proj): Linear(in_features=576, out_features=1536, bias=False) (down_proj): Linear(in_features=1536, out_features=576, bias=False) (act_fn): SiLU() ) """ def __init__(self, config): super().__init__() self.config = config self.gate_proj = nn.Linear(self.config['hidden_size'], self.config['intermediate_size'], bias=False) self.up_proj = nn.Linear(self.config['hidden_size'], self.config['intermediate_size'], bias=False) self.down_proj = nn.Linear(self.config['intermediate_size'], self.config['hidden_size'], bias=False) self.act_fn = SiLU() def forward(self, x): gate = self.gate_proj(x) up = self.up_proj(x) down = self.down_proj(self.act_fn(gate)*up) return down class LlamaRMSNorm(nn.Module): """ (norm): LlamaRMSNorm((576,), eps=1e-05) # RMSNorm Formula: # RMS(x) = sqrt((1 / d) * sum(x_i^2 for i in range(d))) # x_normalized = x / RMS(x) # output = gamma * x_normalized """ def __init__(self, config): super().__init__() self.config = config self.eps = self.config['rms_norm_eps'] self.weight = nn.Parameter(torch.ones(self.config['hidden_size'])) def forward(self, x): rms = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + self.eps) return self.weight *rms * x class LlamaDecoderLayer(nn.Module): def __init__(self, config, rotary_emb): super().__init__() self.config = config self.self_attn = LlamaAttention(self.config, rotary_emb) self.mlp = LlamaMLP(self.config) self.input_layernorm = LlamaRMSNorm(self.config) self.post_attention_layernorm = LlamaRMSNorm(self.config) def forward(self, x): residual = x x = self.input_layernorm(x) x = self.self_attn(x) x = x + residual residual = x x = self.post_attention_layernorm(x) x = self.mlp(x) x = x + residual return x # # x = x + self.self_attn(self.input_layernorm(x)) # # x = x + self.mlp(self.post_attention_layernorm(x)) # return x class LlamaModel(nn.Module): def __init__(self, config): super().__init__() self.init_method = config['init_method'] self.config = config['model_config'] self.embed_tokens = nn.Embedding(self.config['vocab_size'], self.config['hidden_size']) self.rotary_emb = RotaryPositionalEmbedding(self.config['hidden_size'], self.config['rope_theta']) self.layers = nn.ModuleList([LlamaDecoderLayer(self.config, self.rotary_emb) for _ in range(self.config['num_hidden_layers'])]) self.norm = LlamaRMSNorm(self.config) self.lm_head = nn.Linear(self.config['hidden_size'], self.config['vocab_size'], bias=False) if self.config['tie_word_embeddings']: self.lm_head.weight = self.embed_tokens.weight self.apply(lambda m: _init_weights(m, self.init_method['std'])) def forward(self, x, y=None): x = self.embed_tokens(x) for layer in self.layers: x = layer(x) x = self.norm(x) logits = self.lm_head(x) # B,T,V logits = logits.view(-1, logits.size(-1)) # Shape: [B*T, V] if y is not None: y = y.view(-1) # Shape: [B*T] loss = torch.nn.functional.cross_entropy(logits, y) return logits, loss else: return logits, None