ndc8
commited on
Commit
·
65edee9
1
Parent(s):
7ecd130
aa
Browse files- .github/instructions/recheck.instructions.md +90 -0
- Dockerfile +0 -34
- README.md +46 -0
- README_DEPLOY_HF.md +70 -0
- backend_service.py +42 -237
- gemma_gguf_backend.py +1 -0
- launch_vllm.py +57 -0
- requirements.txt +10 -2
- space.yaml +2 -4
.github/instructions/recheck.instructions.md
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
applyTo: "**"
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
# The QC Mindset: Architect of Trust
|
| 6 |
+
|
| 7 |
+
At the highest level, Quality Control is not about finding defects; it's about **engineering confidence**. Your role is to guarantee a resilient system that protects business value, customer trust, and brand reputation. You are not only a gatekeeper who inspects products at the end of a line, but you are an architect who designs quality into the very foundation of the process.
|
| 8 |
+
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# CMD The Three Pillars of High-Level QC Thinking
|
| 12 |
+
|
| 13 |
+
Your strategic thinking should be built on three core pillars that elevate QC from a technical function to a business-critical one.
|
| 14 |
+
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
## 1. Think Like a Risk Manager, Not a Feature Tester
|
| 18 |
+
|
| 19 |
+
Your primary concern isn't _"Does this button work?"_ but **"What is the business impact if this system fails?"**
|
| 20 |
+
|
| 21 |
+
### Shift your focus from individual bugs to a portfolio of risks:
|
| 22 |
+
|
| 23 |
+
- View every potential quality issue through an **economic lens**
|
| 24 |
+
- Quantify failures in terms of:
|
| 25 |
+
- 💰 **Cost impact**
|
| 26 |
+
- 📉 **Customer churn potential**
|
| 27 |
+
- ⚖️ **Legal/regulatory exposure**
|
| 28 |
+
- 🔥 **Reputational damage**
|
| 29 |
+
- Reframe quality discussions from **technical debates** into **strategic business decisions**
|
| 30 |
+
- Position yourself as a **vital strategic partner to leadership**
|
| 31 |
+
|
| 32 |
+
---
|
| 33 |
+
|
| 34 |
+
## 2. Think Like a System Designer, Not an Inspector
|
| 35 |
+
|
| 36 |
+
Your goal is **prevention, not detection**. A system that relies on end-stage inspection to catch errors is fundamentally broken.
|
| 37 |
+
|
| 38 |
+
### Design a "Quality Immune System":
|
| 39 |
+
|
| 40 |
+
- Analyze the **entire development lifecycle**
|
| 41 |
+
- Identify **weak points where defects originate**
|
| 42 |
+
- Build **feedback loops** and **automated checks**
|
| 43 |
+
- Establish **cultural standards** that make defects hard to survive
|
| 44 |
+
- Measure success by **defects prevented**, not **bugs found**
|
| 45 |
+
|
| 46 |
+
> **Success Metric**: Fewer defects created = stronger quality architecture
|
| 47 |
+
|
| 48 |
+
---
|
| 49 |
+
|
| 50 |
+
## 3. Think Like a Governor, Not a Policeman
|
| 51 |
+
|
| 52 |
+
Your authority comes from **objective, data-driven standards**, not subjective opinion. You cannot scale quality based on individual heroics or personal judgment.
|
| 53 |
+
|
| 54 |
+
### Govern Through Standards:
|
| 55 |
+
|
| 56 |
+
- Establish clear, **non-negotiable "Definition of Done"**
|
| 57 |
+
- Create your **quality constitution** understood by all
|
| 58 |
+
- Shift from **manual inspection** to **process auditing**
|
| 59 |
+
- Focus on **analyzing quality data** and **improving standards**
|
| 60 |
+
- Make quality **systemic, not situational**
|
| 61 |
+
|
| 62 |
+
---
|
| 63 |
+
|
| 64 |
+
# The Ultimate Litmus Test: The Legacy Question
|
| 65 |
+
|
| 66 |
+
For any major process change, strategic decision, or new initiative, ask the ultimate high-level question:
|
| 67 |
+
|
| 68 |
+
> **"If I left the company tomorrow, would the quality system I built continue to protect the business on its own?"**
|
| 69 |
+
|
| 70 |
+
### If NO:
|
| 71 |
+
|
| 72 |
+
- Quality still depends too heavily on **individuals**
|
| 73 |
+
- System lacks **institutional resilience**
|
| 74 |
+
- Standards need **greater automation and documentation**
|
| 75 |
+
|
| 76 |
+
### If YES:
|
| 77 |
+
|
| 78 |
+
- You've created **institutionalized quality**
|
| 79 |
+
- Built **cultural and operational resilience**
|
| 80 |
+
- Designed a system that **operates independently of any single person**
|
| 81 |
+
|
| 82 |
+
---
|
| 83 |
+
|
| 84 |
+
# Your Ultimate Mission
|
| 85 |
+
|
| 86 |
+
> **Transform quality from a function performed by people into a system that performs for people.**
|
| 87 |
+
|
| 88 |
+
Your ultimate goal is to make quality so inherent in the culture that the dedicated QC function can focus entirely on **strategic risk management** and **future challenges**, rather than inspecting daily deliverables.
|
| 89 |
+
|
| 90 |
+
Create systems that **scale without you** — that's the mark of a true Quality Architect.
|
Dockerfile
CHANGED
|
@@ -1,34 +0,0 @@
|
|
| 1 |
-
FROM python:3.11-slim
|
| 2 |
-
|
| 3 |
-
# Set working directory
|
| 4 |
-
WORKDIR /app
|
| 5 |
-
|
| 6 |
-
# Install system dependencies
|
| 7 |
-
RUN apt-get update && apt-get install -y \
|
| 8 |
-
git \
|
| 9 |
-
curl \
|
| 10 |
-
build-essential \
|
| 11 |
-
cmake \
|
| 12 |
-
pkg-config \
|
| 13 |
-
python3-dev \
|
| 14 |
-
&& rm -rf /var/lib/apt/lists/*
|
| 15 |
-
|
| 16 |
-
# Copy requirements first for better caching
|
| 17 |
-
COPY requirements.txt .
|
| 18 |
-
|
| 19 |
-
# Install Python dependencies
|
| 20 |
-
RUN pip install --no-cache-dir -r requirements.txt
|
| 21 |
-
|
| 22 |
-
# Copy application code
|
| 23 |
-
COPY . .
|
| 24 |
-
|
| 25 |
-
# Expose port
|
| 26 |
-
EXPOSE 8000
|
| 27 |
-
|
| 28 |
-
# Set environment variables
|
| 29 |
-
ENV PYTHONUNBUFFERED=1
|
| 30 |
-
ENV HOST=0.0.0.0
|
| 31 |
-
ENV PORT=8000
|
| 32 |
-
|
| 33 |
-
# Run the application
|
| 34 |
-
CMD ["python", "backend_service.py", "--host", "0.0.0.0", "--port", "8000"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -1,3 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Fine-tuning Gemma 3n E4B on MacBook M1 (Apple Silicon) with Unsloth
|
| 2 |
|
| 3 |
This project supports local fine-tuning of the Gemma 3n E4B model using Unsloth, PEFT/LoRA, and export to GGUF Q4_K_XL for efficient inference. The workflow is optimized for Apple Silicon (M1/M2/M3) and avoids CUDA/bitsandbytes dependencies.
|
|
|
|
| 1 |
+
# Hugging Face Spaces: FastAPI OpenAI-Compatible Backend
|
| 2 |
+
|
| 3 |
+
This project is now ready to deploy as a Hugging Face Space using FastAPI and transformers (no vLLM, no llama-cpp/gguf).
|
| 4 |
+
|
| 5 |
+
## Features
|
| 6 |
+
|
| 7 |
+
- OpenAI-compatible `/v1/chat/completions` endpoint
|
| 8 |
+
- Multimodal support (text + image, if model supports)
|
| 9 |
+
- Environment variable support via `.env`
|
| 10 |
+
- Hugging Face Spaces compatible (CPU or T4/RTX GPU)
|
| 11 |
+
|
| 12 |
+
## Usage (Local)
|
| 13 |
+
|
| 14 |
+
```bash
|
| 15 |
+
pip install -r requirements.txt
|
| 16 |
+
python -m uvicorn backend_service:app --host 0.0.0.0 --port 7860
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
## Usage (Hugging Face Spaces)
|
| 20 |
+
|
| 21 |
+
- Push this repo to your Hugging Face Space
|
| 22 |
+
- Space will auto-launch with FastAPI backend
|
| 23 |
+
- Use `/v1/chat/completions` endpoint for OpenAI-compatible clients
|
| 24 |
+
|
| 25 |
+
## Notes
|
| 26 |
+
|
| 27 |
+
- Only transformers models are supported (no GGUF/llama-cpp, no vLLM)
|
| 28 |
+
- Set your model in the `AI_MODEL` environment variable or edit `backend_service.py`
|
| 29 |
+
- For secrets, use the Hugging Face Spaces Secrets UI or a `.env` file
|
| 30 |
+
|
| 31 |
+
## Example curl
|
| 32 |
+
|
| 33 |
+
```bash
|
| 34 |
+
curl -X POST https://<your-space>.hf.space/v1/chat/completions \
|
| 35 |
+
-H "Content-Type: application/json" \
|
| 36 |
+
-d '{"model": "google/gemma-3n-E4B-it", "messages": [{"role": "user", "content": "Hello!"}]}'
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
---
|
| 40 |
+
|
| 41 |
+
For more, see Hugging Face Spaces docs: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 42 |
+
|
| 43 |
+
# Fallback Logic
|
| 44 |
+
|
| 45 |
+
If vLLM fails to start or respond, the backend will automatically fallback to the legacy backend.
|
| 46 |
+
|
| 47 |
# Fine-tuning Gemma 3n E4B on MacBook M1 (Apple Silicon) with Unsloth
|
| 48 |
|
| 49 |
This project supports local fine-tuning of the Gemma 3n E4B model using Unsloth, PEFT/LoRA, and export to GGUF Q4_K_XL for efficient inference. The workflow is optimized for Apple Silicon (M1/M2/M3) and avoids CUDA/bitsandbytes dependencies.
|
README_DEPLOY_HF.md
CHANGED
|
@@ -66,3 +66,73 @@ class EndpointHandler:
|
|
| 66 |
2. Upload the `adapter` directory and `handler.py` to your Hugging Face repo.
|
| 67 |
3. Deploy as an Inference Endpoint.
|
| 68 |
4. Send requests to your endpoint!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
2. Upload the `adapter` directory and `handler.py` to your Hugging Face repo.
|
| 67 |
3. Deploy as an Inference Endpoint.
|
| 68 |
4. Send requests to your endpoint!
|
| 69 |
+
|
| 70 |
+
````
|
| 71 |
+
# Hugging Face Inference Endpoint: Gemma-3n-E4B-it LoRA Adapter
|
| 72 |
+
|
| 73 |
+
This repository provides a LoRA adapter fine-tuned on top of a Hugging Face Transformers model (e.g., Gemma-3n-E4B-it) using PEFT. It is ready to be deployed as a Hugging Face Inference Endpoint.
|
| 74 |
+
|
| 75 |
+
## How to Deploy as an Endpoint
|
| 76 |
+
|
| 77 |
+
1. **Upload the `adapter` directory (produced by training) to your Hugging Face Hub repository.**
|
| 78 |
+
|
| 79 |
+
- The directory should contain `adapter_config.json`, `adapter_model.bin`, and tokenizer files.
|
| 80 |
+
|
| 81 |
+
2. **Add a `handler.py` file to define the endpoint logic.**
|
| 82 |
+
|
| 83 |
+
3. **Push to the Hugging Face Hub.**
|
| 84 |
+
|
| 85 |
+
4. **Deploy as an Inference Endpoint via the Hugging Face UI.**
|
| 86 |
+
|
| 87 |
+
---
|
| 88 |
+
|
| 89 |
+
## Example `handler.py`
|
| 90 |
+
|
| 91 |
+
This file loads the base model and LoRA adapter, and exposes a `__call__` method for inference.
|
| 92 |
+
|
| 93 |
+
```python
|
| 94 |
+
from typing import Dict, Any
|
| 95 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 96 |
+
from peft import PeftModel, PeftConfig
|
| 97 |
+
import torch
|
| 98 |
+
|
| 99 |
+
class EndpointHandler:
|
| 100 |
+
def __init__(self, path="."):
|
| 101 |
+
# Load base model and tokenizer
|
| 102 |
+
base_model_id = "<BASE_MODEL_ID>" # e.g., "google/gemma-2b"
|
| 103 |
+
self.tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True)
|
| 104 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_id, trust_remote_code=True)
|
| 105 |
+
# Load LoRA adapter
|
| 106 |
+
self.model = PeftModel.from_pretrained(base_model, f"{path}/adapter")
|
| 107 |
+
self.model.eval()
|
| 108 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 109 |
+
self.model.to(self.device)
|
| 110 |
+
|
| 111 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
| 112 |
+
prompt = data["inputs"] if isinstance(data, dict) else data
|
| 113 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
| 114 |
+
with torch.no_grad():
|
| 115 |
+
output = self.model.generate(**inputs, max_new_tokens=256)
|
| 116 |
+
decoded = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
| 117 |
+
return {"generated_text": decoded}
|
| 118 |
+
````
|
| 119 |
+
|
| 120 |
+
- Replace `<BASE_MODEL_ID>` with the correct base model (e.g., `google/gemma-2b`).
|
| 121 |
+
- The endpoint will accept a JSON payload with an `inputs` field containing the prompt.
|
| 122 |
+
|
| 123 |
+
---
|
| 124 |
+
|
| 125 |
+
## Notes
|
| 126 |
+
|
| 127 |
+
- Make sure your `requirements.txt` includes `transformers`, `peft`, and `torch`.
|
| 128 |
+
- For large models, use an Inference Endpoint with GPU.
|
| 129 |
+
- You can customize the handler for chat formatting, streaming, etc.
|
| 130 |
+
|
| 131 |
+
---
|
| 132 |
+
|
| 133 |
+
## Quickstart
|
| 134 |
+
|
| 135 |
+
1. Train your adapter with `train_gemma_unsloth.py`.
|
| 136 |
+
2. Upload the `adapter` directory and `handler.py` to your Hugging Face repo.
|
| 137 |
+
3. Deploy as an Inference Endpoint.
|
| 138 |
+
4. Send requests to your endpoint!
|
backend_service.py
CHANGED
|
@@ -1,9 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
FastAPI Backend AI Service using Gemma-3n-E4B-it-GGUF
|
| 3 |
Provides OpenAI-compatible chat completion endpoints powered by unsloth/gemma-3n-E4B-it-GGUF
|
| 4 |
"""
|
| 5 |
-
|
| 6 |
-
import os
|
| 7 |
import warnings
|
| 8 |
|
| 9 |
# Suppress warnings before any other imports
|
|
@@ -31,14 +37,7 @@ import uvicorn
|
|
| 31 |
import requests
|
| 32 |
from PIL import Image
|
| 33 |
|
| 34 |
-
|
| 35 |
-
try:
|
| 36 |
-
from llama_cpp import Llama
|
| 37 |
-
llama_cpp_available = True
|
| 38 |
-
logger = logging.getLogger(__name__)
|
| 39 |
-
logger.info("✅ llama-cpp-python support available")
|
| 40 |
-
except ImportError:
|
| 41 |
-
llama_cpp_available = False
|
| 42 |
|
| 43 |
# Keep transformers imports as fallback
|
| 44 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
@@ -51,14 +50,7 @@ import torch
|
|
| 51 |
logging.basicConfig(level=logging.INFO)
|
| 52 |
logger = logging.getLogger(__name__)
|
| 53 |
|
| 54 |
-
|
| 55 |
-
try:
|
| 56 |
-
import bitsandbytes as bnb
|
| 57 |
-
quantization_available = True
|
| 58 |
-
logger.info("✅ BitsAndBytes quantization support available")
|
| 59 |
-
except ImportError:
|
| 60 |
-
quantization_available = False
|
| 61 |
-
logger.warning("⚠️ BitsAndBytes not available - 4-bit models will use standard loading")
|
| 62 |
|
| 63 |
# Pydantic models for multimodal content
|
| 64 |
class TextContent(BaseModel):
|
|
@@ -143,41 +135,17 @@ class CompletionRequest(BaseModel):
|
|
| 143 |
temperature: Optional[float] = Field(default=0.7, ge=0.0, le=2.0)
|
| 144 |
|
| 145 |
|
| 146 |
-
|
| 147 |
-
# Model can be configured via environment variable - defaults to Gemma 3n
|
| 148 |
current_model = os.environ.get("AI_MODEL", "unsloth/gemma-3n-E4B-it-GGUF")
|
| 149 |
vision_model = os.environ.get("VISION_MODEL", "Salesforce/blip-image-captioning-base")
|
| 150 |
|
| 151 |
-
#
|
| 152 |
-
llm = None
|
| 153 |
-
|
| 154 |
-
# Transformers model support (fallback)
|
| 155 |
tokenizer = None
|
| 156 |
model = None
|
| 157 |
image_text_pipeline = None # type: ignore
|
| 158 |
|
| 159 |
-
|
| 160 |
-
"""Get quantization config for 4-bit models"""
|
| 161 |
-
if not quantization_available:
|
| 162 |
-
return None
|
| 163 |
-
|
| 164 |
-
# Check if this is a 4-bit model that should use quantization
|
| 165 |
-
is_4bit_model = (
|
| 166 |
-
"4bit" in model_name.lower() or
|
| 167 |
-
"bnb" in model_name.lower() or
|
| 168 |
-
"unsloth" in model_name.lower()
|
| 169 |
-
)
|
| 170 |
-
|
| 171 |
-
if is_4bit_model:
|
| 172 |
-
logger.info(f"🔧 Configuring 4-bit quantization for {model_name}")
|
| 173 |
-
return BitsAndBytesConfig(
|
| 174 |
-
load_in_4bit=True,
|
| 175 |
-
bnb_4bit_compute_dtype=torch.float16,
|
| 176 |
-
bnb_4bit_quant_type="nf4",
|
| 177 |
-
bnb_4bit_use_double_quant=True,
|
| 178 |
-
)
|
| 179 |
-
|
| 180 |
-
return None
|
| 181 |
|
| 182 |
# Image processing utilities
|
| 183 |
async def download_image(url: str) -> Image.Image:
|
|
@@ -222,135 +190,18 @@ def has_images(messages: List[ChatMessage]) -> bool:
|
|
| 222 |
@asynccontextmanager
|
| 223 |
async def lifespan(app: FastAPI):
|
| 224 |
"""Application lifespan manager for startup and shutdown events"""
|
| 225 |
-
global tokenizer, model, image_text_pipeline,
|
| 226 |
-
logger.info("🚀 Starting AI Backend Service...")
|
| 227 |
-
|
| 228 |
-
# Check if this is a GGUF model that should use llama-cpp-python
|
| 229 |
-
is_gguf_model = "gguf" in current_model.lower() or "gemma-3n" in current_model.lower()
|
| 230 |
-
|
| 231 |
try:
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
verbose=True,
|
| 241 |
-
# Gemma 3n specific settings
|
| 242 |
-
n_ctx=4096, # Start with 4K context, can be increased to 32K
|
| 243 |
-
n_threads=4, # Adjust based on CPU cores
|
| 244 |
-
n_gpu_layers=-1, # Use all GPU layers if CUDA available
|
| 245 |
-
# Chat format for Gemma 3n
|
| 246 |
-
chat_format="gemma", # Use built-in gemma format
|
| 247 |
-
)
|
| 248 |
-
logger.info("✅ Successfully loaded Gemma 3n GGUF model")
|
| 249 |
-
|
| 250 |
-
except Exception as gguf_error:
|
| 251 |
-
logger.warning(f"⚠️ GGUF model loading failed: {gguf_error}")
|
| 252 |
-
logger.info("💡 Please ensure you have downloaded the GGUF model file locally")
|
| 253 |
-
logger.info("💡 Visit: https://huggingface.co/unsloth/gemma-3n-E4B-it-GGUF")
|
| 254 |
-
|
| 255 |
-
# For now, we'll continue with transformers fallback
|
| 256 |
-
is_gguf_model = False
|
| 257 |
-
|
| 258 |
-
# Fallback to transformers if GGUF loading failed or not available
|
| 259 |
-
if not is_gguf_model or not llama_cpp_available:
|
| 260 |
-
logger.info(f"📥 Loading model with transformers: {current_model}")
|
| 261 |
-
|
| 262 |
-
# Load tokenizer and model directly from HuggingFace repo (standard transformers format)
|
| 263 |
-
logger.info(f"📥 Loading tokenizer from {current_model}...")
|
| 264 |
-
tokenizer = AutoTokenizer.from_pretrained(current_model)
|
| 265 |
-
|
| 266 |
-
# Get quantization config if needed
|
| 267 |
-
quantization_config = get_quantization_config(current_model)
|
| 268 |
-
|
| 269 |
-
logger.info(f"📥 Loading model from {current_model}...")
|
| 270 |
-
try:
|
| 271 |
-
if quantization_config:
|
| 272 |
-
logger.info("🔧 Attempting 4-bit quantization")
|
| 273 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 274 |
-
current_model,
|
| 275 |
-
quantization_config=quantization_config,
|
| 276 |
-
device_map="auto",
|
| 277 |
-
torch_dtype=torch.bfloat16,
|
| 278 |
-
low_cpu_mem_usage=True,
|
| 279 |
-
trust_remote_code=True,
|
| 280 |
-
)
|
| 281 |
-
else:
|
| 282 |
-
logger.info("📥 Using standard model loading with optimized settings")
|
| 283 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 284 |
-
current_model,
|
| 285 |
-
torch_dtype=torch.bfloat16,
|
| 286 |
-
device_map="auto",
|
| 287 |
-
low_cpu_mem_usage=True,
|
| 288 |
-
trust_remote_code=True,
|
| 289 |
-
)
|
| 290 |
-
except Exception as quant_error:
|
| 291 |
-
if ("CUDA" in str(quant_error) or
|
| 292 |
-
"bitsandbytes" in str(quant_error) or
|
| 293 |
-
"PackageNotFoundError" in str(quant_error) or
|
| 294 |
-
"No package metadata was found for bitsandbytes" in str(quant_error)):
|
| 295 |
-
|
| 296 |
-
logger.warning(f"⚠️ Quantization failed - bitsandbytes not available or no CUDA: {quant_error}")
|
| 297 |
-
logger.info("🔄 Falling back to standard model loading, ignoring pre-quantized config")
|
| 298 |
-
|
| 299 |
-
# For pre-quantized models, we need to load config first and remove quantization
|
| 300 |
-
try:
|
| 301 |
-
logger.info("🔧 Loading model config to remove quantization settings")
|
| 302 |
-
|
| 303 |
-
config = AutoConfig.from_pretrained(current_model, trust_remote_code=True)
|
| 304 |
-
|
| 305 |
-
# Remove any quantization configuration from the config
|
| 306 |
-
if hasattr(config, 'quantization_config'):
|
| 307 |
-
logger.info("🚫 Removing quantization_config from model config")
|
| 308 |
-
config.quantization_config = None
|
| 309 |
-
|
| 310 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 311 |
-
current_model,
|
| 312 |
-
config=config,
|
| 313 |
-
torch_dtype=torch.float16,
|
| 314 |
-
low_cpu_mem_usage=True,
|
| 315 |
-
trust_remote_code=True,
|
| 316 |
-
device_map="cpu", # Force CPU when quantization fails
|
| 317 |
-
)
|
| 318 |
-
except Exception as fallback_error:
|
| 319 |
-
logger.warning(f"⚠️ Config-based loading failed: {fallback_error}")
|
| 320 |
-
logger.info("🔄 Trying standard loading without quantization config")
|
| 321 |
-
try:
|
| 322 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 323 |
-
current_model,
|
| 324 |
-
torch_dtype=torch.float16,
|
| 325 |
-
low_cpu_mem_usage=True,
|
| 326 |
-
trust_remote_code=True,
|
| 327 |
-
device_map="cpu",
|
| 328 |
-
)
|
| 329 |
-
except Exception as standard_error:
|
| 330 |
-
logger.warning(f"⚠️ Standard loading also failed: {standard_error}")
|
| 331 |
-
logger.info("🔄 Trying with minimal configuration - bypassing all quantization")
|
| 332 |
-
# Ultimate fallback: Load without any custom config
|
| 333 |
-
try:
|
| 334 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 335 |
-
current_model,
|
| 336 |
-
trust_remote_code=True,
|
| 337 |
-
)
|
| 338 |
-
except Exception as minimal_error:
|
| 339 |
-
logger.warning(f"⚠️ Minimal loading also failed: {minimal_error}")
|
| 340 |
-
logger.info("🔄 Final fallback: Using deployment-friendly default model")
|
| 341 |
-
# If this specific model absolutely cannot load, fallback to a reliable alternative
|
| 342 |
-
fallback_model = "microsoft/DialoGPT-medium"
|
| 343 |
-
logger.info(f"📥 Loading fallback model: {fallback_model}")
|
| 344 |
-
tokenizer = AutoTokenizer.from_pretrained(fallback_model)
|
| 345 |
-
model = AutoModelForCausalLM.from_pretrained(fallback_model)
|
| 346 |
-
logger.info(f"✅ Successfully loaded fallback model: {fallback_model}")
|
| 347 |
-
# Update current_model to reflect what we actually loaded
|
| 348 |
-
current_model = fallback_model
|
| 349 |
-
else:
|
| 350 |
-
raise quant_error
|
| 351 |
-
|
| 352 |
logger.info(f"✅ Successfully loaded model and tokenizer: {current_model}")
|
| 353 |
-
|
| 354 |
# Load image pipeline for multimodal support
|
| 355 |
try:
|
| 356 |
logger.info(f"🖼️ Initializing image captioning pipeline with model: {vision_model}")
|
|
@@ -359,7 +210,6 @@ async def lifespan(app: FastAPI):
|
|
| 359 |
except Exception as e:
|
| 360 |
logger.warning(f"⚠️ Could not load image captioning pipeline: {e}")
|
| 361 |
image_text_pipeline = None
|
| 362 |
-
|
| 363 |
except Exception as e:
|
| 364 |
logger.error(f"❌ Failed to initialize model: {e}")
|
| 365 |
raise RuntimeError(f"Service initialization failed: {e}")
|
|
@@ -388,9 +238,9 @@ app.add_middleware(
|
|
| 388 |
|
| 389 |
|
| 390 |
def ensure_model_ready():
|
| 391 |
-
"""Check if
|
| 392 |
-
if
|
| 393 |
-
raise HTTPException(status_code=503, detail="Service not ready - no model initialized (
|
| 394 |
|
| 395 |
def convert_messages_to_prompt(messages: List[ChatMessage]) -> str:
|
| 396 |
"""Convert OpenAI messages format to a single prompt string"""
|
|
@@ -482,61 +332,16 @@ async def generate_multimodal_response(
|
|
| 482 |
|
| 483 |
|
| 484 |
def generate_response_local(messages: List[ChatMessage], max_tokens: int = 512, temperature: float = 0.7, top_p: float = 0.95) -> str:
|
| 485 |
-
"""Generate response using local model
|
| 486 |
ensure_model_ready()
|
| 487 |
-
|
| 488 |
try:
|
| 489 |
-
|
| 490 |
-
if llm is not None:
|
| 491 |
-
logger.info("🦾 Generating response using Gemma 3n GGUF model")
|
| 492 |
-
return generate_response_gguf(messages, max_tokens, temperature, top_p)
|
| 493 |
-
|
| 494 |
-
# Fallback to transformers model
|
| 495 |
-
logger.info("🤗 Generating response using transformers model")
|
| 496 |
return generate_response_transformers(messages, max_tokens, temperature, top_p)
|
| 497 |
-
|
| 498 |
except Exception as e:
|
| 499 |
logger.error(f"Local generation failed: {e}")
|
| 500 |
return "I apologize, but I'm having trouble generating a response right now. Please try again."
|
| 501 |
|
| 502 |
-
|
| 503 |
-
"""Generate response using GGUF model via llama-cpp-python."""
|
| 504 |
-
try:
|
| 505 |
-
# Use the chat completion method if available
|
| 506 |
-
if hasattr(llm, 'create_chat_completion'):
|
| 507 |
-
# Convert to dict format for llama-cpp-python
|
| 508 |
-
messages_dict = [{"role": msg.role, "content": msg.content} for msg in messages]
|
| 509 |
-
|
| 510 |
-
response = llm.create_chat_completion(
|
| 511 |
-
messages=messages_dict,
|
| 512 |
-
max_tokens=max_tokens,
|
| 513 |
-
temperature=temperature,
|
| 514 |
-
top_p=top_p,
|
| 515 |
-
top_k=64, # Add top_k for better Gemma 3n performance
|
| 516 |
-
stop=["<end_of_turn>", "<eos>", "</s>"] # Gemma 3n stop tokens
|
| 517 |
-
)
|
| 518 |
-
|
| 519 |
-
return response['choices'][0]['message']['content'].strip()
|
| 520 |
-
|
| 521 |
-
else:
|
| 522 |
-
# Fallback to direct prompt completion
|
| 523 |
-
prompt = convert_messages_to_gemma_prompt(messages)
|
| 524 |
-
|
| 525 |
-
response = llm(
|
| 526 |
-
prompt,
|
| 527 |
-
max_tokens=max_tokens,
|
| 528 |
-
temperature=temperature,
|
| 529 |
-
top_p=top_p,
|
| 530 |
-
top_k=64,
|
| 531 |
-
stop=["<end_of_turn>", "<eos>", "</s>"],
|
| 532 |
-
echo=False
|
| 533 |
-
)
|
| 534 |
-
|
| 535 |
-
return response['choices'][0]['text'].strip()
|
| 536 |
-
|
| 537 |
-
except Exception as e:
|
| 538 |
-
logger.error(f"GGUF generation failed: {e}")
|
| 539 |
-
return "I apologize, but I'm having trouble generating a response right now. Please try again."
|
| 540 |
|
| 541 |
def convert_messages_to_gemma_prompt(messages: List[ChatMessage]) -> str:
|
| 542 |
"""Convert OpenAI messages format to Gemma 3n chat format."""
|
|
@@ -568,7 +373,7 @@ def generate_response_transformers(messages: List[ChatMessage], max_tokens: int
|
|
| 568 |
content_str = m.content if isinstance(m.content, str) else extract_text_and_images(m.content)[0]
|
| 569 |
chat_messages.append({"role": m.role, "content": content_str})
|
| 570 |
|
| 571 |
-
# Apply chat template
|
| 572 |
inputs = tokenizer.apply_chat_template(
|
| 573 |
chat_messages,
|
| 574 |
add_generation_prompt=True,
|
|
@@ -576,13 +381,12 @@ def generate_response_transformers(messages: List[ChatMessage], max_tokens: int
|
|
| 576 |
return_dict=True,
|
| 577 |
return_tensors="pt",
|
| 578 |
)
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
# Decode only the newly generated tokens (exclude input)
|
| 587 |
generated_text = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
|
| 588 |
return generated_text.strip()
|
|
@@ -644,11 +448,12 @@ async def list_models():
|
|
| 644 |
# ...existing code...
|
| 645 |
|
| 646 |
|
|
|
|
|
|
|
|
|
|
| 647 |
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
| 648 |
-
async def create_chat_completion(
|
| 649 |
-
|
| 650 |
-
) -> ChatCompletionResponse:
|
| 651 |
-
"""Create a chat completion (OpenAI-compatible) with multimodal support."""
|
| 652 |
try:
|
| 653 |
if not request.messages:
|
| 654 |
raise HTTPException(status_code=400, detail="Messages cannot be empty")
|
|
|
|
| 1 |
+
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
load_dotenv()
|
| 4 |
+
import os
|
| 5 |
+
import httpx
|
| 6 |
+
|
| 7 |
+
# Hugging Face Spaces: Only transformers backend is supported (no vLLM, no llama-cpp/gguf)
|
| 8 |
+
|
| 9 |
"""
|
| 10 |
FastAPI Backend AI Service using Gemma-3n-E4B-it-GGUF
|
| 11 |
Provides OpenAI-compatible chat completion endpoints powered by unsloth/gemma-3n-E4B-it-GGUF
|
| 12 |
"""
|
|
|
|
|
|
|
| 13 |
import warnings
|
| 14 |
|
| 15 |
# Suppress warnings before any other imports
|
|
|
|
| 37 |
import requests
|
| 38 |
from PIL import Image
|
| 39 |
|
| 40 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
# Keep transformers imports as fallback
|
| 43 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 50 |
logging.basicConfig(level=logging.INFO)
|
| 51 |
logger = logging.getLogger(__name__)
|
| 52 |
|
| 53 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
# Pydantic models for multimodal content
|
| 56 |
class TextContent(BaseModel):
|
|
|
|
| 135 |
temperature: Optional[float] = Field(default=0.7, ge=0.0, le=2.0)
|
| 136 |
|
| 137 |
|
| 138 |
+
|
| 139 |
+
# Model can be configured via environment variable - defaults to Gemma 3n (transformers format)
|
| 140 |
current_model = os.environ.get("AI_MODEL", "unsloth/gemma-3n-E4B-it-GGUF")
|
| 141 |
vision_model = os.environ.get("VISION_MODEL", "Salesforce/blip-image-captioning-base")
|
| 142 |
|
| 143 |
+
# Transformers model support
|
|
|
|
|
|
|
|
|
|
| 144 |
tokenizer = None
|
| 145 |
model = None
|
| 146 |
image_text_pipeline = None # type: ignore
|
| 147 |
|
| 148 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
# Image processing utilities
|
| 151 |
async def download_image(url: str) -> Image.Image:
|
|
|
|
| 190 |
@asynccontextmanager
|
| 191 |
async def lifespan(app: FastAPI):
|
| 192 |
"""Application lifespan manager for startup and shutdown events"""
|
| 193 |
+
global tokenizer, model, image_text_pipeline, current_model
|
| 194 |
+
logger.info("🚀 Starting AI Backend Service (Hugging Face Spaces mode)...")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
try:
|
| 196 |
+
logger.info(f"📥 Loading model with transformers: {current_model}")
|
| 197 |
+
tokenizer = AutoTokenizer.from_pretrained(current_model)
|
| 198 |
+
# Hugging Face Spaces: Remove device_map and torch_dtype for CPU compatibility
|
| 199 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 200 |
+
current_model,
|
| 201 |
+
low_cpu_mem_usage=True,
|
| 202 |
+
trust_remote_code=True,
|
| 203 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
logger.info(f"✅ Successfully loaded model and tokenizer: {current_model}")
|
|
|
|
| 205 |
# Load image pipeline for multimodal support
|
| 206 |
try:
|
| 207 |
logger.info(f"🖼️ Initializing image captioning pipeline with model: {vision_model}")
|
|
|
|
| 210 |
except Exception as e:
|
| 211 |
logger.warning(f"⚠️ Could not load image captioning pipeline: {e}")
|
| 212 |
image_text_pipeline = None
|
|
|
|
| 213 |
except Exception as e:
|
| 214 |
logger.error(f"❌ Failed to initialize model: {e}")
|
| 215 |
raise RuntimeError(f"Service initialization failed: {e}")
|
|
|
|
| 238 |
|
| 239 |
|
| 240 |
def ensure_model_ready():
|
| 241 |
+
"""Check if transformers model is loaded and ready"""
|
| 242 |
+
if tokenizer is None or model is None:
|
| 243 |
+
raise HTTPException(status_code=503, detail="Service not ready - no model initialized (transformers)")
|
| 244 |
|
| 245 |
def convert_messages_to_prompt(messages: List[ChatMessage]) -> str:
|
| 246 |
"""Convert OpenAI messages format to a single prompt string"""
|
|
|
|
| 332 |
|
| 333 |
|
| 334 |
def generate_response_local(messages: List[ChatMessage], max_tokens: int = 512, temperature: float = 0.7, top_p: float = 0.95) -> str:
|
| 335 |
+
"""Generate response using local transformers model with chat template."""
|
| 336 |
ensure_model_ready()
|
|
|
|
| 337 |
try:
|
| 338 |
+
logger.info(" Generating response using transformers model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
return generate_response_transformers(messages, max_tokens, temperature, top_p)
|
|
|
|
| 340 |
except Exception as e:
|
| 341 |
logger.error(f"Local generation failed: {e}")
|
| 342 |
return "I apologize, but I'm having trouble generating a response right now. Please try again."
|
| 343 |
|
| 344 |
+
## GGUF/llama-cpp support removed for Hugging Face Spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
|
| 346 |
def convert_messages_to_gemma_prompt(messages: List[ChatMessage]) -> str:
|
| 347 |
"""Convert OpenAI messages format to Gemma 3n chat format."""
|
|
|
|
| 373 |
content_str = m.content if isinstance(m.content, str) else extract_text_and_images(m.content)[0]
|
| 374 |
chat_messages.append({"role": m.role, "content": content_str})
|
| 375 |
|
| 376 |
+
# Apply chat template and tokenize for Hugging Face Spaces CPU
|
| 377 |
inputs = tokenizer.apply_chat_template(
|
| 378 |
chat_messages,
|
| 379 |
add_generation_prompt=True,
|
|
|
|
| 381 |
return_dict=True,
|
| 382 |
return_tensors="pt",
|
| 383 |
)
|
| 384 |
+
# Pass input_ids and attention_mask directly (no .to(model.device))
|
| 385 |
+
outputs = model.generate(
|
| 386 |
+
input_ids=inputs["input_ids"],
|
| 387 |
+
attention_mask=inputs.get("attention_mask"),
|
| 388 |
+
max_new_tokens=max_tokens
|
| 389 |
+
)
|
|
|
|
| 390 |
# Decode only the newly generated tokens (exclude input)
|
| 391 |
generated_text = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
|
| 392 |
return generated_text.strip()
|
|
|
|
| 448 |
# ...existing code...
|
| 449 |
|
| 450 |
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
# --- Hugging Face Spaces: Only transformers backend supported ---
|
| 454 |
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
| 455 |
+
async def create_chat_completion(request: ChatCompletionRequest) -> ChatCompletionResponse:
|
| 456 |
+
"""Create a chat completion (OpenAI-compatible) with multimodal support. Hugging Face Spaces: Only transformers backend supported."""
|
|
|
|
|
|
|
| 457 |
try:
|
| 458 |
if not request.messages:
|
| 459 |
raise HTTPException(status_code=400, detail="Messages cannot be empty")
|
gemma_gguf_backend.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
Working Gemma 3n GGUF Backend Service
|
|
|
|
| 1 |
+
|
| 2 |
#!/usr/bin/env python3
|
| 3 |
"""
|
| 4 |
Working Gemma 3n GGUF Backend Service
|
launch_vllm.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# (Removed for Hugging Face Spaces)
|
| 2 |
+
#!/usr/bin/env python3
|
| 3 |
+
"""
|
| 4 |
+
Launch vLLM OpenAI-compatible server for google/gemma-3n-E4B-it in venv.
|
| 5 |
+
"""
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
load_dotenv()
|
| 8 |
+
import os
|
| 9 |
+
import subprocess
|
| 10 |
+
import sys
|
| 11 |
+
|
| 12 |
+
MODEL = "google/gemma-3n-E4B-it"
|
| 13 |
+
PORT = os.environ.get("VLLM_PORT", "8000")
|
| 14 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") # User must set this for gated models
|
| 15 |
+
|
| 16 |
+
if not HF_TOKEN:
|
| 17 |
+
print("[ERROR] Please set the HF_TOKEN environment variable for model download.")
|
| 18 |
+
sys.exit(1)
|
| 19 |
+
|
| 20 |
+
cmd = [
|
| 21 |
+
sys.executable, "-m", "vllm.entrypoints.openai.api_server",
|
| 22 |
+
"--model", MODEL,
|
| 23 |
+
"--port", PORT,
|
| 24 |
+
"--host", "0.0.0.0",
|
| 25 |
+
"--token", HF_TOKEN
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
+
print(f"[INFO] Launching vLLM server for {MODEL} on port {PORT}...")
|
| 29 |
+
subprocess.run(cmd)
|
| 30 |
+
#!/usr/bin/env python3
|
| 31 |
+
"""
|
| 32 |
+
Launch vLLM OpenAI-compatible server for google/gemma-3n-E4B-it in venv.
|
| 33 |
+
"""
|
| 34 |
+
from dotenv import load_dotenv
|
| 35 |
+
load_dotenv()
|
| 36 |
+
import os
|
| 37 |
+
import subprocess
|
| 38 |
+
import sys
|
| 39 |
+
|
| 40 |
+
MODEL = "google/gemma-3n-E4B-it"
|
| 41 |
+
PORT = os.environ.get("VLLM_PORT", "8000")
|
| 42 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") # User must set this for gated models
|
| 43 |
+
|
| 44 |
+
if not HF_TOKEN:
|
| 45 |
+
print("[ERROR] Please set the HF_TOKEN environment variable for model download.")
|
| 46 |
+
sys.exit(1)
|
| 47 |
+
|
| 48 |
+
cmd = [
|
| 49 |
+
sys.executable, "-m", "vllm.entrypoints.openai.api_server",
|
| 50 |
+
"--model", MODEL,
|
| 51 |
+
"--port", PORT,
|
| 52 |
+
"--host", "0.0.0.0",
|
| 53 |
+
"--token", HF_TOKEN
|
| 54 |
+
]
|
| 55 |
+
|
| 56 |
+
print(f"[INFO] Launching vLLM server for {MODEL} on port {PORT}...")
|
| 57 |
+
subprocess.run(cmd)
|
requirements.txt
CHANGED
|
@@ -1,5 +1,13 @@
|
|
| 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
transformers
|
| 3 |
-
peft
|
| 4 |
torch
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
+
|
| 3 |
+
# Hugging Face Spaces requirements (transformers backend only)
|
| 4 |
+
fastapi
|
| 5 |
+
uvicorn
|
| 6 |
transformers
|
|
|
|
| 7 |
torch
|
| 8 |
+
python-dotenv
|
| 9 |
+
httpx
|
| 10 |
+
requests
|
| 11 |
+
Pillow
|
| 12 |
+
# Optional: gradio for demo UI
|
| 13 |
+
# gradio
|
space.yaml
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
sdk:
|
| 2 |
python_version: 3.10
|
| 3 |
-
|
| 4 |
-
env:
|
| 5 |
-
- DEMO_MODE=0 # Ensure model loads properly in production
|
|
|
|
| 1 |
+
sdk: docker
|
| 2 |
python_version: 3.10
|
| 3 |
+
entrypoint: python -m uvicorn backend_service:app --host 0.0.0.0 --port $PORT
|
|
|
|
|
|