Spaces:
Sleeping
Sleeping
Commit
·
e4a95ec
1
Parent(s):
4832132
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import statsmodels.api as sm
|
5 |
+
|
6 |
+
# Load the model from the file
|
7 |
+
with open('linear_regression_model_encoded.pkl', 'rb') as file:
|
8 |
+
loaded_model = pickle.load(file)
|
9 |
+
# The model is now loaded and ready to use
|
10 |
+
|
11 |
+
train_encoded_columns = [
|
12 |
+
'age', 'bmi', 'bloodpressure', 'children',
|
13 |
+
'gender_male',
|
14 |
+
'diabetic_Yes',
|
15 |
+
'smoker_Yes',
|
16 |
+
'region_northwest', 'region_southeast', 'region_southwest'
|
17 |
+
]
|
18 |
+
|
19 |
+
# Define the function that will use the model to predict
|
20 |
+
def predict(age, bmi, bloodpressure,\
|
21 |
+
children, gender, diabetic, smoker, region):
|
22 |
+
# Create a DataFrame for the input data
|
23 |
+
input_data = pd.DataFrame({
|
24 |
+
'age': [age],
|
25 |
+
'bmi': [bmi],
|
26 |
+
'bloodpressure': [bloodpressure],
|
27 |
+
'children': [children],
|
28 |
+
'gender': [gender],
|
29 |
+
'diabetic': [diabetic],
|
30 |
+
'smoker': [smoker],
|
31 |
+
'region': [region]
|
32 |
+
})
|
33 |
+
|
34 |
+
# One-hot encode the input data
|
35 |
+
input_data_encoded = pd.get_dummies(input_data)
|
36 |
+
|
37 |
+
# Add missing columns as zeros and align the order of columns
|
38 |
+
for column in train_encoded_columns:
|
39 |
+
if column not in input_data_encoded.columns:
|
40 |
+
input_data_encoded[column] = 0
|
41 |
+
input_data_encoded = input_data_encoded[train_encoded_columns]
|
42 |
+
|
43 |
+
# Add a constant term if your model expects an intercept
|
44 |
+
input_data_encoded = sm.add_constant(input_data_encoded, has_constant='add')
|
45 |
+
|
46 |
+
# Make a prediction using the loaded model
|
47 |
+
prediction = loaded_model.predict(input_data_encoded)
|
48 |
+
return prediction[0]
|
49 |
+
|
50 |
+
# Define the dropdown options based on the training data categories
|
51 |
+
gender_options = ['male', 'female']
|
52 |
+
diabetic_options = ['Yes', 'No']
|
53 |
+
smoker_options = ['Yes', 'No']
|
54 |
+
region_options = ['southwest', 'southeast', 'northwest', 'northeast']
|
55 |
+
|
56 |
+
# Create the Gradio interface
|
57 |
+
iface = gr.Interface(
|
58 |
+
fn=predict,
|
59 |
+
inputs=[
|
60 |
+
gr.Number(label="Age"),
|
61 |
+
gr.Number(label="BMI"),
|
62 |
+
gr.Number(label="Blood Pressure"),
|
63 |
+
gr.Number(label="Children"),
|
64 |
+
gr.Dropdown(choices=gender_options, label="Gender", value='male'),
|
65 |
+
gr.Dropdown(choices=diabetic_options, label="Diabetic", value='Yes'),
|
66 |
+
gr.Dropdown(choices=smoker_options, label="Smoker", value='Yes'),
|
67 |
+
gr.Dropdown(choices=region_options, label="Region", value='northwest')
|
68 |
+
],
|
69 |
+
outputs=gr.Textbox(label="Predicted Claim"),
|
70 |
+
title="Medical Claim Prediction",
|
71 |
+
description="Enter Age, BMI, and Blood Pressure to predict the medical claim",
|
72 |
+
allow_flagging='never') # Set flagging to 'never'
|
73 |
+
|
74 |
+
# Launch the interface
|
75 |
+
iface.launch()
|