simplenet / app.py
coderx7's picture
fix gradio label unexpected keyword error
27aa541 verified
raw
history blame
3.19 kB
import os
from PIL import Image
import gradio as gr
import torch
from torchvision import transforms
os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
model = torch.hub.load("coderx7/simplenet_pytorch:v1.0.0","simplenetv1_5m_m1", pretrained=True, trust_repo=True)
# or any of these variants
# model = torch.hub.load("coderx7/simplenet_pytorch:v1.0.0","simplenetv1_5m_m2", pretrained=True)
# model = torch.hub.load("coderx7/simplenet_pytorch:v1.0.0","simplenetv1_9m_m1", pretrained=True)
# model = torch.hub.load("coderx7/simplenet_pytorch:v1.0.0","simplenetv1_9m_m2", pretrained=True)
# model = torch.hub.load("coderx7/simplenet_pytorch:v1.0.0","simplenetv1_small_m1_05", pretrained=True)
# model = torch.hub.load("coderx7/simplenet_pytorch:v1.0.0","simplenetv1_small_m2_05", pretrained=True)
# model = torch.hub.load("coderx7/simplenet_pytorch:v1.0.0","simplenetv1_small_m1_075", pretrained=True)
# model = torch.hub.load("coderx7/simplenet_pytorch:v1.0.0","simplenetv1_small_m2_075", pretrained=True)
model.eval()
# Download an example image from the pytorch website
torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
def inference(input_image):
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch)
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
probabilities = torch.nn.functional.softmax(output[0], dim=0)
# Read the categories
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Show top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
result = {}
for i in range(top5_prob.size(0)):
result[categories[top5_catid[i]]] = top5_prob[i].item()
return result
inputs = gr.Image(type='pil')
outputs = gr.Label(num_top_classes=5)
title = "SimpleNet"
description = "Gradio demo for SimpleNet network pre-trained on ImageNet. This demo uses the simplenet_5m_m1 variant. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1608.06037' target='_blank'>Lets Keep it simple, Using simple architectures to outperform deeper and more complex architectures</a> | <a href='https://github.com/Coderx7/SimpleNet_Pytorch/blob/master/imagenet/simplenet.py' target='_blank'>Github Repo</a></p>"
examples = [['dog.jpg']]
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()