File size: 2,766 Bytes
65ea99e
31166da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65ea99e
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, DiffusionPipeline as Pipe
import torch

class Generador:
    def img_to_bytes(image) -> bytes:
        import io
        _imgByteArr = io.BytesIO()
        image.save(_imgByteArr, format="png")
        return _imgByteArr.getvalue()
    def using_runway_sd_15(prompt:str)->bytes:
        try:            
            _generador = Pipe.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
            _generador.to("cuda")
            _imagen = _generador(prompt).images[0]
            _response = bytes(Generador.img_to_bytes(image=_imagen))
        except Exception as e:
            _response = bytes(str(e), 'utf-8')
        finally:
            return _response
    def using_stability_sd_21(prompt:str)->bytes:
        try:
            _generador = Pipe.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
            _generador.to("cuda")
            _imagen = _generador(prompt).images[0]
            _response = bytes(Generador.img_to_bytes(image=_imagen))
        except Exception as e:
            _response = bytes(str(e), 'utf-8')
        finally:
            return _response
    def using_realistic_v14(prompt:str)->bytes:
        try:
            _generador = Pipe.from_pretrained("SG161222/Realistic_Vision_V1.4", torch_dtype=torch.float16)
            _generador.to("cuda")
            _imagen = _generador(prompt).images[0]
            _response = bytes(Generador.img_to_bytes(image=_imagen))
        except Exception as e:
            _response = bytes(str(e), 'utf-8')
        finally:
            return _response
    def using_prompthero_openjourney(prompt:str)->bytes:
        try:
            _generador = Pipe.from_pretrained("prompthero/openjourney", torch_dtype=torch.float16)
            _generador.to("cuda")
            _imagen = _generador(prompt).images[0]
            _response = bytes(Generador.img_to_bytes(image=_imagen))
        except Exception as e:
            print(e)
            _response = bytes(str(e), 'utf-8')
        finally:
            return _response
class Difusor:
    def using_runway_sd_15(prompt:str)->bytes:
        try:
            controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-mlsd")
            _generador = StableDiffusionControlNetPipeline.from_pretrained(
                "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16)
            _generador.to("cuda")
            _imagen = _generador(prompt).images[0]
            _response = bytes(Generador.img_to_bytes(image=_imagen))
        except Exception as e:
            print(e)
            _response = bytes(str(e), 'utf-8')
        finally:
            return _response