Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,7 +11,7 @@ GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
|
|
| 11 |
if not GOOGLE_API_KEY:
|
| 12 |
raise ValueError("Please set the GOOGLE_API_KEY environment variable.")
|
| 13 |
|
| 14 |
-
# Initialize the Gemini API client via AI Studio
|
| 15 |
client = genai.Client(api_key=GOOGLE_API_KEY)
|
| 16 |
|
| 17 |
# Use the Gemini 2.0 Flash model.
|
|
@@ -21,8 +21,8 @@ MODEL_NAME = "gemini-2.0-flash-001"
|
|
| 21 |
def call_gemini(video_file: str, prompt: str) -> str:
|
| 22 |
"""
|
| 23 |
Call the Gemini model with the provided video file and prompt.
|
| 24 |
-
The video
|
| 25 |
-
|
| 26 |
"""
|
| 27 |
with open(video_file, "rb") as f:
|
| 28 |
file_bytes = f.read()
|
|
@@ -30,7 +30,7 @@ def call_gemini(video_file: str, prompt: str) -> str:
|
|
| 30 |
model=MODEL_NAME,
|
| 31 |
contents=[
|
| 32 |
Part(file_data=file_bytes, mime_type="video/mp4"),
|
| 33 |
-
prompt
|
| 34 |
]
|
| 35 |
)
|
| 36 |
return response.text
|
|
@@ -53,14 +53,15 @@ def get_key_frames(video_file: str, summary: str, user_query: str) -> list:
|
|
| 53 |
Ask Gemini to output key timestamps and descriptions in plain text.
|
| 54 |
The prompt instructs the model to output one line per event in the format:
|
| 55 |
HH:MM:SS - description
|
| 56 |
-
We then parse these lines and extract frames using OpenCV.
|
| 57 |
|
| 58 |
Returns a list of tuples: (image_array, caption)
|
| 59 |
"""
|
| 60 |
prompt = (
|
| 61 |
-
"List the key timestamps in the video and a brief description of the
|
| 62 |
"Output one line per event in the following format: HH:MM:SS - description. Do not include any extra text."
|
| 63 |
)
|
|
|
|
| 64 |
prompt += f" Video Summary: {summary}"
|
| 65 |
if user_query:
|
| 66 |
prompt += f" Focus on: {user_query}"
|
|
@@ -103,15 +104,16 @@ def get_key_frames(video_file: str, summary: str, user_query: str) -> list:
|
|
| 103 |
|
| 104 |
def analyze_video(video_file: str, user_query: str) -> (str, list):
|
| 105 |
"""
|
| 106 |
-
Perform a single-step video analysis
|
| 107 |
-
First, call Gemini to get a brief summary
|
| 108 |
-
Then,
|
| 109 |
|
| 110 |
Returns:
|
| 111 |
-
- A Markdown report
|
| 112 |
- A gallery list of key frames (each as a tuple of (image, caption)).
|
| 113 |
"""
|
| 114 |
-
|
|
|
|
| 115 |
if user_query:
|
| 116 |
summary_prompt += f" Also focus on: {user_query}"
|
| 117 |
try:
|
|
@@ -119,6 +121,7 @@ def analyze_video(video_file: str, user_query: str) -> (str, list):
|
|
| 119 |
except Exception as e:
|
| 120 |
summary = f"[Error in summary extraction: {e}]"
|
| 121 |
markdown_report = f"## Video Analysis Report\n\n**Summary:**\n\n{summary}\n"
|
|
|
|
| 122 |
key_frames_gallery = get_key_frames(video_file, summary, user_query)
|
| 123 |
if not key_frames_gallery:
|
| 124 |
markdown_report += "\n*No key frames were extracted.*\n"
|
|
|
|
| 11 |
if not GOOGLE_API_KEY:
|
| 12 |
raise ValueError("Please set the GOOGLE_API_KEY environment variable.")
|
| 13 |
|
| 14 |
+
# Initialize the Gemini API client via AI Studio.
|
| 15 |
client = genai.Client(api_key=GOOGLE_API_KEY)
|
| 16 |
|
| 17 |
# Use the Gemini 2.0 Flash model.
|
|
|
|
| 21 |
def call_gemini(video_file: str, prompt: str) -> str:
|
| 22 |
"""
|
| 23 |
Call the Gemini model with the provided video file and prompt.
|
| 24 |
+
The video is read as bytes and passed with MIME type "video/mp4",
|
| 25 |
+
and the prompt is wrapped as a text part.
|
| 26 |
"""
|
| 27 |
with open(video_file, "rb") as f:
|
| 28 |
file_bytes = f.read()
|
|
|
|
| 30 |
model=MODEL_NAME,
|
| 31 |
contents=[
|
| 32 |
Part(file_data=file_bytes, mime_type="video/mp4"),
|
| 33 |
+
Part(text=prompt)
|
| 34 |
]
|
| 35 |
)
|
| 36 |
return response.text
|
|
|
|
| 53 |
Ask Gemini to output key timestamps and descriptions in plain text.
|
| 54 |
The prompt instructs the model to output one line per event in the format:
|
| 55 |
HH:MM:SS - description
|
| 56 |
+
We then parse these lines and extract the corresponding frames using OpenCV.
|
| 57 |
|
| 58 |
Returns a list of tuples: (image_array, caption)
|
| 59 |
"""
|
| 60 |
prompt = (
|
| 61 |
+
"List the key timestamps in the video and a brief description of the event at that time. "
|
| 62 |
"Output one line per event in the following format: HH:MM:SS - description. Do not include any extra text."
|
| 63 |
)
|
| 64 |
+
# Append the summary (and user query if provided) so the model has context.
|
| 65 |
prompt += f" Video Summary: {summary}"
|
| 66 |
if user_query:
|
| 67 |
prompt += f" Focus on: {user_query}"
|
|
|
|
| 104 |
|
| 105 |
def analyze_video(video_file: str, user_query: str) -> (str, list):
|
| 106 |
"""
|
| 107 |
+
Perform a single-step video analysis.
|
| 108 |
+
First, call Gemini with a simple prompt to get a brief summary.
|
| 109 |
+
Then, call Gemini to list key timestamps with descriptions.
|
| 110 |
|
| 111 |
Returns:
|
| 112 |
+
- A Markdown report summarizing the video.
|
| 113 |
- A gallery list of key frames (each as a tuple of (image, caption)).
|
| 114 |
"""
|
| 115 |
+
# Use a very simple prompt for summary.
|
| 116 |
+
summary_prompt = "Summarize this video."
|
| 117 |
if user_query:
|
| 118 |
summary_prompt += f" Also focus on: {user_query}"
|
| 119 |
try:
|
|
|
|
| 121 |
except Exception as e:
|
| 122 |
summary = f"[Error in summary extraction: {e}]"
|
| 123 |
markdown_report = f"## Video Analysis Report\n\n**Summary:**\n\n{summary}\n"
|
| 124 |
+
|
| 125 |
key_frames_gallery = get_key_frames(video_file, summary, user_query)
|
| 126 |
if not key_frames_gallery:
|
| 127 |
markdown_report += "\n*No key frames were extracted.*\n"
|