|
import gradio as gr |
|
import numpy as np |
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') |
|
|
|
def get_embeddings(sentences): |
|
|
|
|
|
|
|
embeddings = model.encode(sentences, convert_to_tensor=True) |
|
|
|
|
|
embeddings_array=embeddings.tolist() |
|
return embeddings_array |
|
|
|
|
|
interface = gr.Interface( |
|
fn=get_embeddings, |
|
inputs=gr.Textbox(lines=2, placeholder="Enter sentences here, one per line"), |
|
outputs=gr.Array(), |
|
title="Sentence Embeddings", |
|
description="Enter sentences to get their embeddings." |
|
) |
|
|
|
|
|
interface.launch() |
|
|