Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sentence_transformers import SentenceTransformer
|
| 2 |
+
import gradio as gr
|
| 3 |
+
|
| 4 |
+
# Load the pre-trained model
|
| 5 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 6 |
+
|
| 7 |
+
# Define the function to process requests
|
| 8 |
+
def generate_embeddings(chunks):
|
| 9 |
+
embeddings = embedding_model.encode(chunks, convert_to_tensor=True)
|
| 10 |
+
return embeddings.tolist() # Convert tensor to list for Gradio
|
| 11 |
+
|
| 12 |
+
# Define the Gradio interface
|
| 13 |
+
iface = gr.Interface(
|
| 14 |
+
fn=generate_embeddings,
|
| 15 |
+
inputs=gr.inputs.Textbox(lines=5, placeholder="Enter text chunks here..."),
|
| 16 |
+
outputs=gr.outputs.JSON(),
|
| 17 |
+
title="Sentence Transformer Embeddings",
|
| 18 |
+
description="Generate embeddings for input text chunks."
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
# Launch the Gradio app
|
| 22 |
+
if __name__ == "__main__":
|
| 23 |
+
iface.launch()
|