cocktailpeanut commited on
Commit
9978cfd
·
1 Parent(s): 967e6cf
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -123,13 +123,13 @@ controlnet_path = f'data/checkpoints/ControlNetModel'
123
 
124
  # load IdentityNet
125
  st = time.time()
126
- identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
127
- zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=torch.float16)
128
  et = time.time()
129
  elapsed_time = et - st
130
  print('Loading ControlNet took: ', elapsed_time, 'seconds')
131
  st = time.time()
132
- vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
133
  et = time.time()
134
  elapsed_time = et - st
135
  print('Loading VAE took: ', elapsed_time, 'seconds')
@@ -137,7 +137,7 @@ st = time.time()
137
  pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21",
138
  vae=vae,
139
  controlnet=[identitynet, zoedepthnet],
140
- torch_dtype=torch.float16)
141
  pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
142
  pipe.load_ip_adapter_instantid(face_adapter)
143
  pipe.set_ip_adapter_scale(0.8)
@@ -233,7 +233,7 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
233
  for_inference=True,
234
  )
235
  lora_model.merge_to(
236
- pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda"
237
  )
238
  del weights_sd
239
  del lora_model
 
123
 
124
  # load IdentityNet
125
  st = time.time()
126
+ identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=dtype)
127
+ zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=dtype)
128
  et = time.time()
129
  elapsed_time = et - st
130
  print('Loading ControlNet took: ', elapsed_time, 'seconds')
131
  st = time.time()
132
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
133
  et = time.time()
134
  elapsed_time = et - st
135
  print('Loading VAE took: ', elapsed_time, 'seconds')
 
137
  pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21",
138
  vae=vae,
139
  controlnet=[identitynet, zoedepthnet],
140
+ torch_dtype=dtype)
141
  pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
142
  pipe.load_ip_adapter_instantid(face_adapter)
143
  pipe.set_ip_adapter_scale(0.8)
 
233
  for_inference=True,
234
  )
235
  lora_model.merge_to(
236
+ pipe.text_encoder, pipe.unet, weights_sd, dtype, device
237
  )
238
  del weights_sd
239
  del lora_model