Spaces:
Runtime error
Runtime error
UI improvement (#2)
Browse files- UI improvement (2290da3bfc0307242f67876fc49acde249414149)
Co-authored-by: Morpheus <[email protected]>
app.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import devicetorch
|
|
|
|
| 4 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionPipeline, LCMScheduler
|
| 5 |
from diffusers.schedulers import TCDScheduler
|
| 6 |
|
|
@@ -60,35 +62,41 @@ def generate_image(
|
|
| 60 |
|
| 61 |
pipe = pipe_sdxl if mode == "sdxl" else pipe_sd15
|
| 62 |
|
| 63 |
-
|
| 64 |
-
pipe.load_lora_weights(
|
| 65 |
"wangfuyun/PCM_Weights", weight_name=checkpoint, subfolder=mode
|
| 66 |
)
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
|
| 80 |
results = pipe(
|
| 81 |
prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale
|
| 82 |
)
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
# if SAFETY_CHECKER:
|
| 85 |
# images, has_nsfw_concepts = check_nsfw_images(results.images)
|
| 86 |
# if any(has_nsfw_concepts):
|
| 87 |
# gr.Warning("NSFW content detected.")
|
| 88 |
# return Image.new("RGB", (512, 512))
|
| 89 |
# return images[0]
|
| 90 |
-
return results.images[0]
|
| 91 |
|
|
|
|
|
|
|
| 92 |
|
| 93 |
def update_steps(ckpt):
|
| 94 |
num_inference_steps = checkpoints[ckpt][1]
|
|
@@ -99,7 +107,14 @@ def update_steps(ckpt):
|
|
| 99 |
|
| 100 |
css = """
|
| 101 |
.gradio-container {
|
| 102 |
-
max-width:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
}
|
| 104 |
"""
|
| 105 |
with gr.Blocks(css=css) as demo:
|
|
@@ -108,14 +123,12 @@ with gr.Blocks(css=css) as demo:
|
|
| 108 |
# Phased Consistency Model
|
| 109 |
|
| 110 |
Phased Consistency Model (PCM) is an image generation technique that addresses the limitations of the Latent Consistency Model (LCM) in high-resolution and text-conditioned image generation.
|
| 111 |
-
PCM outperforms LCM across various generation settings and achieves state-of-the-art results in both image and video generation.
|
| 112 |
-
|
| 113 |
-
[[paper](https://huggingface.co/papers/2405.18407)] [[arXiv](https://arxiv.org/abs/2405.18407)] [[code](https://github.com/G-U-N/Phased-Consistency-Model)] [[project page](https://g-u-n.github.io/projects/pcm)]
|
| 114 |
"""
|
| 115 |
)
|
| 116 |
with gr.Group():
|
| 117 |
with gr.Row():
|
| 118 |
-
prompt = gr.Textbox(label="Prompt", scale=
|
| 119 |
ckpt = gr.Dropdown(
|
| 120 |
label="Select inference steps",
|
| 121 |
choices=list(checkpoints.keys()),
|
|
@@ -137,10 +150,12 @@ PCM outperforms LCM across various generation settings and achieves state-of-the
|
|
| 137 |
show_progress=False,
|
| 138 |
)
|
| 139 |
|
|
|
|
| 140 |
submit_sdxl = gr.Button("Run on SDXL", scale=1)
|
| 141 |
submit_sd15 = gr.Button("Run on SD15", scale=1)
|
| 142 |
|
| 143 |
-
img = gr.Image(label="PCM Image")
|
|
|
|
| 144 |
gr.Examples(
|
| 145 |
examples=[
|
| 146 |
[" astronaut walking on the moon", "4-Step", 4],
|
|
@@ -171,7 +186,7 @@ PCM outperforms LCM across various generation settings and achieves state-of-the
|
|
| 171 |
],
|
| 172 |
],
|
| 173 |
inputs=[prompt, ckpt, steps],
|
| 174 |
-
outputs=[img],
|
| 175 |
fn=generate_image,
|
| 176 |
#cache_examples="lazy",
|
| 177 |
)
|
|
@@ -180,14 +195,22 @@ PCM outperforms LCM across various generation settings and achieves state-of-the
|
|
| 180 |
fn=generate_image,
|
| 181 |
triggers=[ckpt.change, prompt.submit, submit_sdxl.click],
|
| 182 |
inputs=[prompt, ckpt, steps],
|
| 183 |
-
outputs=[img],
|
| 184 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
gr.on(
|
| 186 |
fn=lambda *args: generate_image(*args, mode="sd15"),
|
| 187 |
triggers=[submit_sd15.click],
|
| 188 |
inputs=[prompt, ckpt, steps],
|
| 189 |
-
outputs=[img],
|
| 190 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
|
| 193 |
demo.queue(api_open=False).launch(show_api=False)
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
import devicetorch
|
| 5 |
+
import tempfile
|
| 6 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionPipeline, LCMScheduler
|
| 7 |
from diffusers.schedulers import TCDScheduler
|
| 8 |
|
|
|
|
| 62 |
|
| 63 |
pipe = pipe_sdxl if mode == "sdxl" else pipe_sd15
|
| 64 |
|
| 65 |
+
pipe.load_lora_weights(
|
|
|
|
| 66 |
"wangfuyun/PCM_Weights", weight_name=checkpoint, subfolder=mode
|
| 67 |
)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
if ckpt == "LCM-Like LoRA":
|
| 71 |
+
pipe.scheduler = LCMScheduler()
|
| 72 |
+
else:
|
| 73 |
+
pipe.scheduler = TCDScheduler(
|
| 74 |
+
num_train_timesteps=1000,
|
| 75 |
+
beta_start=0.00085,
|
| 76 |
+
beta_end=0.012,
|
| 77 |
+
beta_schedule="scaled_linear",
|
| 78 |
+
timestep_spacing="trailing",
|
| 79 |
+
)
|
| 80 |
|
| 81 |
results = pipe(
|
| 82 |
prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale
|
| 83 |
)
|
| 84 |
|
| 85 |
+
|
| 86 |
+
gradio_temp_dir = os.environ.get('GRADIO_TEMP_DIR', tempfile.gettempdir())
|
| 87 |
+
temp_file_path = os.path.join(gradio_temp_dir, "image.png")
|
| 88 |
+
results.images[0].save(temp_file_path, format="PNG")
|
| 89 |
+
|
| 90 |
# if SAFETY_CHECKER:
|
| 91 |
# images, has_nsfw_concepts = check_nsfw_images(results.images)
|
| 92 |
# if any(has_nsfw_concepts):
|
| 93 |
# gr.Warning("NSFW content detected.")
|
| 94 |
# return Image.new("RGB", (512, 512))
|
| 95 |
# return images[0]
|
| 96 |
+
return results.images[0], temp_file_path
|
| 97 |
|
| 98 |
+
def clear_cache():
|
| 99 |
+
devicetorch.empty_cache(torch)
|
| 100 |
|
| 101 |
def update_steps(ckpt):
|
| 102 |
num_inference_steps = checkpoints[ckpt][1]
|
|
|
|
| 107 |
|
| 108 |
css = """
|
| 109 |
.gradio-container {
|
| 110 |
+
max-width: 95vw !important;
|
| 111 |
+
margin: auto !important
|
| 112 |
+
}
|
| 113 |
+
.img img {
|
| 114 |
+
height: 70vh !important
|
| 115 |
+
}
|
| 116 |
+
#row-height {
|
| 117 |
+
height: 65px !important
|
| 118 |
}
|
| 119 |
"""
|
| 120 |
with gr.Blocks(css=css) as demo:
|
|
|
|
| 123 |
# Phased Consistency Model
|
| 124 |
|
| 125 |
Phased Consistency Model (PCM) is an image generation technique that addresses the limitations of the Latent Consistency Model (LCM) in high-resolution and text-conditioned image generation.
|
| 126 |
+
PCM outperforms LCM across various generation settings and achieves state-of-the-art results in both image and video generation. [[paper](https://huggingface.co/papers/2405.18407)] [[arXiv](https://arxiv.org/abs/2405.18407)] [[code](https://github.com/G-U-N/Phased-Consistency-Model)] [[project page](https://g-u-n.github.io/projects/pcm)]
|
|
|
|
|
|
|
| 127 |
"""
|
| 128 |
)
|
| 129 |
with gr.Group():
|
| 130 |
with gr.Row():
|
| 131 |
+
prompt = gr.Textbox(label="Prompt", scale=4)
|
| 132 |
ckpt = gr.Dropdown(
|
| 133 |
label="Select inference steps",
|
| 134 |
choices=list(checkpoints.keys()),
|
|
|
|
| 150 |
show_progress=False,
|
| 151 |
)
|
| 152 |
|
| 153 |
+
with gr.Row():
|
| 154 |
submit_sdxl = gr.Button("Run on SDXL", scale=1)
|
| 155 |
submit_sd15 = gr.Button("Run on SD15", scale=1)
|
| 156 |
|
| 157 |
+
img = gr.Image(label="PCM Image", elem_classes="img")
|
| 158 |
+
download_image = gr.File(label="Download Image", file_count="single", interactive=False, elem_id="row-height")
|
| 159 |
gr.Examples(
|
| 160 |
examples=[
|
| 161 |
[" astronaut walking on the moon", "4-Step", 4],
|
|
|
|
| 186 |
],
|
| 187 |
],
|
| 188 |
inputs=[prompt, ckpt, steps],
|
| 189 |
+
outputs=[img, download_image],
|
| 190 |
fn=generate_image,
|
| 191 |
#cache_examples="lazy",
|
| 192 |
)
|
|
|
|
| 195 |
fn=generate_image,
|
| 196 |
triggers=[ckpt.change, prompt.submit, submit_sdxl.click],
|
| 197 |
inputs=[prompt, ckpt, steps],
|
| 198 |
+
outputs=[img, download_image],
|
| 199 |
+
).then(
|
| 200 |
+
fn=clear_cache,
|
| 201 |
+
inputs=[],
|
| 202 |
+
outputs=None
|
| 203 |
+
)
|
| 204 |
gr.on(
|
| 205 |
fn=lambda *args: generate_image(*args, mode="sd15"),
|
| 206 |
triggers=[submit_sd15.click],
|
| 207 |
inputs=[prompt, ckpt, steps],
|
| 208 |
+
outputs=[img, download_image],
|
| 209 |
+
).then(
|
| 210 |
+
fn=clear_cache,
|
| 211 |
+
inputs=[],
|
| 212 |
+
outputs=None
|
| 213 |
+
)
|
| 214 |
|
| 215 |
|
| 216 |
demo.queue(api_open=False).launch(show_api=False)
|