Spaces:
Runtime error
Runtime error
Commit
·
a7bed20
1
Parent(s):
8611f7d
update
Browse files
stable_diffusion/ldm/modules/encoders/modules.py
CHANGED
@@ -5,9 +5,11 @@ import clip
|
|
5 |
from einops import rearrange, repeat
|
6 |
from transformers import CLIPTokenizer, CLIPTextModel, CLIPVisionModel, CLIPModel
|
7 |
import kornia
|
|
|
8 |
|
9 |
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
10 |
|
|
|
11 |
|
12 |
class AbstractEncoder(nn.Module):
|
13 |
def __init__(self):
|
@@ -35,7 +37,7 @@ class ClassEmbedder(nn.Module):
|
|
35 |
|
36 |
class TransformerEmbedder(AbstractEncoder):
|
37 |
"""Some transformer encoder layers"""
|
38 |
-
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device=
|
39 |
super().__init__()
|
40 |
self.device = device
|
41 |
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
@@ -52,7 +54,7 @@ class TransformerEmbedder(AbstractEncoder):
|
|
52 |
|
53 |
class BERTTokenizer(AbstractEncoder):
|
54 |
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
55 |
-
def __init__(self, device=
|
56 |
super().__init__()
|
57 |
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
58 |
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
@@ -80,7 +82,7 @@ class BERTTokenizer(AbstractEncoder):
|
|
80 |
class BERTEmbedder(AbstractEncoder):
|
81 |
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
82 |
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
83 |
-
device=
|
84 |
super().__init__()
|
85 |
self.use_tknz_fn = use_tokenizer
|
86 |
if self.use_tknz_fn:
|
@@ -136,7 +138,7 @@ class SpatialRescaler(nn.Module):
|
|
136 |
|
137 |
class FrozenCLIPEmbedder(AbstractEncoder):
|
138 |
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
139 |
-
def __init__(self, version="openai/clip-vit-large-patch14", device=
|
140 |
super().__init__()
|
141 |
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
142 |
self.transformer = CLIPTextModel.from_pretrained(version)
|
@@ -163,7 +165,7 @@ class FrozenCLIPEmbedder(AbstractEncoder):
|
|
163 |
|
164 |
class FrozenCLIPEmbedderBoth(AbstractEncoder):
|
165 |
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
166 |
-
def __init__(self, version="openai/clip-vit-large-patch14", device=
|
167 |
super().__init__()
|
168 |
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
169 |
self.text_transformer = CLIPTextModel.from_pretrained(version)
|
@@ -217,7 +219,7 @@ class FrozenCLIPEmbedderBoth(AbstractEncoder):
|
|
217 |
|
218 |
class CLIPEmbedderWithLearnableTokens(AbstractEncoder):
|
219 |
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
220 |
-
def __init__(self, version="openai/clip-vit-large-patch14", device=
|
221 |
super().__init__()
|
222 |
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
223 |
self.transformer = CLIPTextModel.from_pretrained(version)
|
@@ -253,7 +255,7 @@ class FrozenCLIPTextEmbedder(nn.Module):
|
|
253 |
"""
|
254 |
Uses the CLIP transformer encoder for text.
|
255 |
"""
|
256 |
-
def __init__(self, version='ViT-L/14', device=
|
257 |
super().__init__()
|
258 |
self.model, _ = clip.load(version, jit=False, device="cpu")
|
259 |
self.device = device
|
@@ -289,7 +291,7 @@ class FrozenClipImageEmbedder(nn.Module):
|
|
289 |
self,
|
290 |
model,
|
291 |
jit=False,
|
292 |
-
device=
|
293 |
antialias=False,
|
294 |
):
|
295 |
super().__init__()
|
@@ -319,4 +321,4 @@ if __name__ == "__main__":
|
|
319 |
from ldm.util import count_params
|
320 |
model = FrozenCLIPEmbedderBoth()
|
321 |
breakpoint()
|
322 |
-
count_params(model, verbose=True)
|
|
|
5 |
from einops import rearrange, repeat
|
6 |
from transformers import CLIPTokenizer, CLIPTextModel, CLIPVisionModel, CLIPModel
|
7 |
import kornia
|
8 |
+
import devicetorch
|
9 |
|
10 |
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
11 |
|
12 |
+
DEVICE = devicetorch.get(torch)
|
13 |
|
14 |
class AbstractEncoder(nn.Module):
|
15 |
def __init__(self):
|
|
|
37 |
|
38 |
class TransformerEmbedder(AbstractEncoder):
|
39 |
"""Some transformer encoder layers"""
|
40 |
+
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device=DEVICE):
|
41 |
super().__init__()
|
42 |
self.device = device
|
43 |
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
|
|
54 |
|
55 |
class BERTTokenizer(AbstractEncoder):
|
56 |
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
57 |
+
def __init__(self, device=DEVICE, vq_interface=True, max_length=77):
|
58 |
super().__init__()
|
59 |
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
60 |
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
|
|
82 |
class BERTEmbedder(AbstractEncoder):
|
83 |
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
84 |
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
85 |
+
device=DEVICE,use_tokenizer=True, embedding_dropout=0.0):
|
86 |
super().__init__()
|
87 |
self.use_tknz_fn = use_tokenizer
|
88 |
if self.use_tknz_fn:
|
|
|
138 |
|
139 |
class FrozenCLIPEmbedder(AbstractEncoder):
|
140 |
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
141 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device=DEVICE, max_length=77):
|
142 |
super().__init__()
|
143 |
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
144 |
self.transformer = CLIPTextModel.from_pretrained(version)
|
|
|
165 |
|
166 |
class FrozenCLIPEmbedderBoth(AbstractEncoder):
|
167 |
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
168 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device=DEVICE, max_length=77, antialias=False,):
|
169 |
super().__init__()
|
170 |
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
171 |
self.text_transformer = CLIPTextModel.from_pretrained(version)
|
|
|
219 |
|
220 |
class CLIPEmbedderWithLearnableTokens(AbstractEncoder):
|
221 |
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
222 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device=DEVICE, max_length=77, num_learnable_tokens=3):
|
223 |
super().__init__()
|
224 |
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
225 |
self.transformer = CLIPTextModel.from_pretrained(version)
|
|
|
255 |
"""
|
256 |
Uses the CLIP transformer encoder for text.
|
257 |
"""
|
258 |
+
def __init__(self, version='ViT-L/14', device=DEVICE, max_length=77, n_repeat=1, normalize=True):
|
259 |
super().__init__()
|
260 |
self.model, _ = clip.load(version, jit=False, device="cpu")
|
261 |
self.device = device
|
|
|
291 |
self,
|
292 |
model,
|
293 |
jit=False,
|
294 |
+
device=DEVICE,
|
295 |
antialias=False,
|
296 |
):
|
297 |
super().__init__()
|
|
|
321 |
from ldm.util import count_params
|
322 |
model = FrozenCLIPEmbedderBoth()
|
323 |
breakpoint()
|
324 |
+
count_params(model, verbose=True)
|