|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import os |
|
|
|
|
|
class Face_3DMM(nn.Module): |
|
def __init__(self, modelpath, id_dim, exp_dim, tex_dim, point_num): |
|
super(Face_3DMM, self).__init__() |
|
|
|
|
|
|
|
self.point_num = point_num |
|
DMM_info = np.load( |
|
os.path.join(modelpath, "3DMM_info.npy"), allow_pickle=True |
|
).item() |
|
base_id = DMM_info["b_shape"][:id_dim, :] |
|
mu_id = DMM_info["mu_shape"] |
|
base_exp = DMM_info["b_exp"][:exp_dim, :] |
|
mu_exp = DMM_info["mu_exp"] |
|
mu = mu_id + mu_exp |
|
mu = mu.reshape(-1, 3) |
|
for i in range(3): |
|
mu[:, i] -= np.mean(mu[:, i]) |
|
mu = mu.reshape(-1) |
|
self.base_id = torch.as_tensor(base_id).cuda() /1000.0 |
|
self.base_exp = torch.as_tensor(base_exp).cuda() /1000.0 |
|
self.mu = torch.as_tensor(mu).cuda() /1000.0 |
|
base_tex = DMM_info["b_tex"][:tex_dim, :] |
|
mu_tex = DMM_info["mu_tex"] |
|
self.base_tex = torch.as_tensor(base_tex).cuda() |
|
self.mu_tex = torch.as_tensor(mu_tex).cuda() |
|
sig_id = DMM_info["sig_shape"][:id_dim] |
|
sig_tex = DMM_info["sig_tex"][:tex_dim] |
|
sig_exp = DMM_info["sig_exp"][:exp_dim] |
|
self.sig_id = torch.as_tensor(sig_id).cuda() |
|
self.sig_tex = torch.as_tensor(sig_tex).cuda() |
|
self.sig_exp = torch.as_tensor(sig_exp).cuda() |
|
|
|
def forward_geo_sub(self, id_para, exp_para, sub_index): |
|
id_para = id_para*self.sig_id |
|
exp_para = exp_para*self.sig_exp |
|
sel_index = torch.cat((3*sub_index.unsqueeze(1), 3*sub_index.unsqueeze(1)+1, |
|
3*sub_index.unsqueeze(1)+2), dim=1).reshape(-1) |
|
geometry = torch.mm(id_para, self.base_id[:, sel_index]) + \ |
|
torch.mm(exp_para, self.base_exp[:, |
|
sel_index]) + self.mu[sel_index] |
|
return geometry.reshape(-1, sub_index.shape[0], 3) |
|
|
|
def forward_geo(self, id_para, exp_para): |
|
id_para = id_para*self.sig_id |
|
exp_para = exp_para*self.sig_exp |
|
geometry = torch.mm(id_para, self.base_id) + \ |
|
torch.mm(exp_para, self.base_exp) + self.mu |
|
return geometry.reshape(-1, self.point_num, 3) |
|
|
|
def forward_tex(self, tex_para): |
|
tex_para = tex_para*self.sig_tex |
|
texture = torch.mm(tex_para, self.base_tex) + self.mu_tex |
|
return texture.reshape(-1, self.point_num, 3) |
|
|