
Toward the Rapid Design of Engineered
Systems Through Deep Neural Networks

Christopher McComb

The design of a system commits a significant portion of the final cost of that sys-
tem. Many computational approaches have been developed to assist designers in the
analysis (e.g., computational fluid dynamics) and synthesis (e.g., topology optimiza-
tion) of engineered systems. However,many of these approaches are computationally
intensive, taking significant time to complete an analysis and even longer to itera-
tively synthesize a solution. The current work proposes a methodology for rapidly
evaluating and synthesizing engineered systems through the use of deep neural net-
works. The proposedmethodology is applied to the analysis and synthesis of offshore
structures such as oil platforms. These structures are constructed in a marine envi-
ronment and are typically designed to achieve specific dynamics in response to a
known spectrum of ocean waves. Results show that deep learning can be used to
accurately and rapidly synthesize and analyze offshore structure.

Introduction

Asignificant amount of the final cost of a system is committed during design.Accord-
ing to the situated function–behavior–structure design framework, design consists of
navigating from the requirements for a solution to the documentation of that solution
[1, 2]. This process entails negotiating through several ontological categories, includ-
ing function, expected behavior, derived behavior, and structure. The focus of this
paper is on the tasks of analysis (deriving behavior from structure) and synthesis (gen-
erating a structure based on desired behavior). Many computational approaches have
been developed to assist designers in the analysis and synthesis of engineered sys-
tems (e.g., computational fluid dynamics and topology optimization, respectively).
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However, these approaches are often computationally intensive, taking significant
time to complete an analysis and even longer to iteratively synthesize a solution.
The current work proposes a methodology for rapidly evaluating and synthesizing
engineered systems through the use of deep neural networks.

The proposed methodology is applied to the analysis and synthesis of offshore
structures. Examples of offshore structures include buoys, oil rigs, and cruise ships.
The analysis of an offshore structure design often involves a simulation that combines
multibody dynamics with computational fluid dynamics. This makes the analysis of
solutions computationally intensive, precluding the use of design algorithms which
are often stochastic in nature and require thousands of iterations [3–5]. The objective
of the proposed work is to alleviate that problem by introducing a methodology for
achieving two goals:

1. the rapid performance analysis of an engineered system, and
2. the rapid synthesis of an engineered system given desired performance charac-

teristics.

The proposed approach makes use of deep neural networks to accomplish these
objectives. Specifically, variational autoencoders are used to perform to reduce the
dimensionality of the input and output data, making it possible to learn analysis and
synthesis in a space of reduced complexity. The remainder of the paper is organized
as follows. A background section reviews related work in machine learning and the
design of offshore structure. The next section lays out the generalizable methodology
for achieving both rapid analysis and synthesis of engineered systems. Results of
applying this methodology to the design of offshore structure are presented and
discussed. This paper concludes with a discussion of future directions for this work,
highlighting the possible role of the engineering design community as a driving force
in generative machine learning research.

Background

Neural Networks and Deep Learning

Artificial neural networks (referred to in the remainder of this paper simply as neural
networks) are computational systems that are analogous to the biological neural
networks that make up nervous tissue and animal brains. Neural networks can be
trained to accomplish a variety of complex tasks, including regression, classification,
and feature extraction. Jain et al. provide a more detailed introduction to neural
networks [6]. Deep learning, which is the focus in this work, refers specifically to
neural networks that have more than one hidden layer.

Neural networks have shown significant success in two-dimensional image recog-
nition tasks. This success has led researchers to apply similar methodology to three-
dimensional recognition tasks [7], facilitated by recent advances in computing that
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enable such tasks to be performed at scale. Seminal dataset and classification efforts
include ObjectNet3D [8], ShapeNet [9], VoxNet [10], and PointNet [11]. The auto-
mated synthesis of three-dimensional objects is still a nascent field in machine learn-
ing. Most approaches focus on creating objects with a given form and category (e.g.,
[12, 13]), rather than attempting to derive a deeper relationship between desired
functionality and requisite form.

This work also makes use of autoencoders. These are specially designed neural
networks that take an input, map it into a space with reduced dimensionality, and then
output a reconstructed version of the input [14]. The two halves of the neural network
(the encoder and the decoder, respectively) can then be used for specific and useful
functions. The encoder canmap an input into a reduced space, essentially performing
data compression, while the decoder can take compressed values and reconstruct an
output. This work uses variational autoencoders which map the input into a space
of latent variables so that the training data are normally distributed [15]. This is
accomplished by training the network with a loss function that measures reconstruc-
tion accuracy as well as how normally distributed the parameters in the maximally
compressed layer are (typically Kullback–Leibler divergence). This ensures that the
variables in the latent space are rich in information. Variational autoencoders have
been used to compress a wide variety of different data, including human faces [16],
handwritten numbers [17], and house numbers [18].

Neural networks of many varieties have been utilized in design and engineering
to accomplish various tasks. For instance, Tseng, Cagan, and Kotovsky utilized a
neural network to learn the preferences of a customer and then utilized that neural
network as the objective function for a genetic algorithm [19]. Dering and Tucker
utilized convolutional neural networks to predict the function of a product from its
form alone [20]. The utilization of deep learning, and specifically autoencoders,
also led to the creation of a computational framework that models the curiosity of
a given user in order to provide surprising examples [21]. Neural networks have
also been utilized to automatically predict quality defects in automotive parts [22]
and to support design for additive manufacturing [23–25]. These examples, while
not exhaustive, serve to highlight potential utility of neural networks for design and
the need for a standardized approach to implementing them. The current research
utilizes a generic, voxel-based approach for describing potential design solutions,
thus ensuring significant representation flexibility.

Offshore Structures

Offshore structures are comprised of buoys, drilling platforms, and wave energy
converters (WECs). WECs are an increasingly common type of offshore structure
that are designed to extract energy from ocean waves. WECs may serve an important
role in the future of humankind, since it is estimated that approximately 3.7 TW (3.7
trillion Watts) of power can be harvested from the world’s oceans [26]. However,
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in order to access that power, several challenges in the design of WECs must be
overcome [27].

A substantial array of numerical methods have been developed for the simulation
of offshore structures, including analytical methods, empirical methods, Navier–S-
tokes equation methods, and boundary-integral equation methods [28]. Analytical
methods offer quick and rough estimates for devices with simple geometry, while
most empirical methods attempt to maintain simplicity while making use of experi-
mental values to increase accuracy. Navier–Stokes equation methods (NSEMs) can
resolve highly nonlinear phenomena, but generally do not permit closed-form solu-
tions, requiring the use of computational fluid dynamics.

Boundary-integral equation methods (BIEMs) are the focus of this work, as they
are the industry standard for design and analysis of offshore structures. BIEMs pro-
duce a potential flow solution in the frequency domain [28]. This means that the
outputs are given as spectra that indicate how much force, damping, or other quan-
tities are applied to an offshore structure for incoming ocean waves with varying
frequencies. Although they are far less computationally expensive than NSEMs,
producing a full BIEM solution for a model with a high mesh resolution can still
take hours. In addition, pure frequency-domain BIEMs are only weakly nonlinear
[28] which makes it impossible to directly implement nonlinear control strategies
within the simulation. One way to overcome this limitation is by numerically inte-
grating over several frequencies of the BIEM solution to yield a time-varying series
for different fluid phenomena [29]. These series can then be applied in an appropri-
ate 6 degree-of-freedom (6DOF) solver to produce a time-domain simulation, from
which important metrics such as average power production can be computed.

The application of the current work focuses on predicting frequency-varyingwave
force spectra as a function of structure geometry (and vice versa). It should be noted
that a similar methodology could be applied directly to other frequency-varying fluid
phenomena that are produced by a BIEM solution. The results of the current work
could be integrated into software packages that utilize the BIEM+6DOF approach
outlined above [30, 31]. This would enable rapid exploration of conceptual solutions,
either by human designers and engineers or by agent-based design algorithms [4, 5,
32].

Methodology

The approach that is proposed in this work for rapidly evaluating and synthesizing
engineered systems can be broken into three steps. This process is depicted graph-
ically in Fig. 1. First, a diverse set of examples of a given system type must be
generated, and the performance of each example must be analyzed using current
methods (finite element analysis, computational fluid dynamics, experimental test-
ing, etc.). The second step entails training two autoencoders: one for the engineered
system and one for the performance assessment. The third and final step in the pro-
posed methodology is the recombination of performance and system autoencoders
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Fig. 1 Primary steps in the proposed methodology

into two new, deep networks that are possible of accomplishing rapid analysis of
a system (encoding the system, decoding performance) as well as synthesis of a
system according to desired performance (encoding performance, and decoding sys-
tem). Both of these new networks should have one or more new layers that must
be trained between the encoder and the decoder, enabling a mapping between the
latent system space and the latent performance space (or vice versa). The use of
autoencoders is critical as it permits the learning of synthesis and analysis in the
latent space which has fewer dimensions (and thus less complexity) than the input
or output.

The current work shares the application of the above methodology to analysis
and synthesis of offshore structures. First, NEMOH, a BIEM solver, was used to
simulate thousands of different floating body geometries, deriving frequency-varying
response forces for each [35]. Next, the data generated in NEMOH was used to
train two variational autoencoders, one of which modeled key features of frequency-
varying response forces and the other modeled key geometric features of the input
geometries. Finally, these autoencoders were used to instantiate two networks: one
for predicting the force spectra of known geometries (analysis), and the other for
generating geometries for a known force spectrum (synthesis). All neural networks
were trained using the Keras neural network API [33] in conjunction with the Theano
library [34]. A full implementation of this work, including training data, is available
in the Python language under an MIT License.1

Data Generation

The dataset used in this work was generated by instantiating 5000 different common
shapes for offshore structures. These included wedges, hemispheres, cylinders, rect-
angular prisms, and cones. All shapes were generated to fit within a 10 m×10 m×
10 m bounding box. These offshore structure shapes were then analyzed using the
NEMOH BIEM solver [35], producing frequency-varying spectra describing the

1https://github.com/HSDL/WAnet/releases/tag/v1.0-beta.

https://github.com/HSDL/WAnet/releases/tag/v1.0-beta
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Fig. 2 Example of a force response spectra and b voxelized geometry

forces applied to the structure both parallel and perpendicular to the direction of the
incoming ocean waves (commonly referred to as heave and surge, respectively), as
well as a moment about the center of gravity of the body (referred to as pitch). An
example of these spectra is provided in Fig. 2a.

The geometry for the offshore structures was originally provided to NEMOH as
a mesh. The meshes were converted into a voxel-based format in order to make the
geometry data more accessible to the proposed neural network approach. Voxels
are a three-dimensional analogue of pixels. Specifically, the bounding box for the
offshore structure was discretized into a 32×32×32 grid, containing 32,768 voxels.
The voxel values in this grid were defined as 1 (if the structure occupied part of the
voxel) of 0 (if the structure did not occupy part of the voxel).

Thus, the final dataset consists of paired geometry-spectra observations. An exam-
ple of a paired observation is provided in Fig. 2. Plots of force response spectra and
voxelized geometries in the remainder of the paper will omit axis labels and scales
in the interest of clarity and concision. This dataset was randomly separated into a
training set (80% of the data, 4000 observations) and a testing set (20% of the data,
1000 observations). All accuracies reported in the remainder of this paper correspond
to measurements on the testing set.

Training Variational Autoencoders

Twovariational autoencoderswere trainedbasedon thedata generatedwithNEMOH.
The structure of these autoencoders is shown in Figs. 3 and 4. Both variational
autoencoders are designed to compress the input data into an N-dimensional latent
space, which describes the number of nodes in the smallest layer. The value of N is
identified through a parametric search, detailed in the results section of this paper.
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Fig. 3 Architecture for the force spectrum autoencoder

Fig. 4 Architecture for the voxel geometry autoencoder

Both autoencoders were trained using the root mean square propagation
(RMSprop) algorithm [36]. The primary term in the loss function of the force spec-
tra autoencoder was based on mean squared error while the primary term for the
geometry autoencoder was based on binary cross-entropy. Both training algorithms
also included a term for Kullback–Leibler divergence [37] of the values in the latent
space (the innermost hidden layer) in the loss function. The computation of the loss
functions in this way is standard for variational autoencoders.

It should be noted that the dimensionality of the latent space for both the spectrum
autoencoder and the geometry autoencoder is described by a single variable, N ,
despite the fact that the force spectrum is much simpler than the structure geometry.
This is an intentional decision, as equating the dimensionality of the spaces makes
it more likely that a one-to-one mapping can be found between them.

Creating Neural Nets for Synthesis and Analysis

The variational autoencoders outlined in the previous section were recombined to
instantiate two new deep neural networks, one for synthesizing geometries and the
other for evaluating geometries. The structure for these neural networks is provided
in Figs. 5 and 6.
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Fig. 5 Architecture for the analysis network

Fig. 6 Architecture for the synthesis network

The network designed for evaluating offshore structures utilizes the geometry
encoder and the spectrum decoder (see Fig. 5). A layer of N nodes was included
between these two elements, and this interior layer was the only layer that was
trained. In essence, this network compresses the geometry of a structure into the N-
dimensional geometry latent space (using the geometry encoder), maps the geometry
latent space into the spectrum latent space (this is the trainableN-node layer), and then
reconstructs the full force spectra, producing the desired output (using the spectra
decoder).

The network designed for synthesis of offshore structure utilizes the spectrum
encoder and the geometry decoder with a trainable N-node layer in between the two
(see Fig. 6). This network compresses the spectra into the N-dimensional spectra
latent space (using the spectra encoder), maps that into the N-dimensional geometry
latent space (through trainable layer), and then reconstructs the full geometry (using
the geometry decoder).

Both analysis and the synthesis networks were trained using the RMSprop algo-
rithm [36]. The primary term in the loss function of the analysis network was based
on mean squared error (since the output was a set of real-valued curves) while the
primary term for the geometry autoencoder was based on binary cross-entropy (since
the output was a set of voxel data with values between 0 and 1).
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Fig. 7 Study to determine appropriate dimensionality of latent space

Results and Discussion

Results and discussion are provided in three subsections. The first subsection details
a parametric study that was used to select the appropriate dimensionality for the
latent space. The second reports the results and examples for the autoencoders (both
geometry and spectrum). These autoencoders are critical as they permit the tasks
of synthesis and analysis to be learned in a space of reduced complexity. The third
subsection does the same for the recombined analysis and synthesis networks.

Determination of Latent Space Dimensionality

In order to determine the appropriate dimensionality for the latent space, a parametric
study was conducted. All four networks used here (the spectrum autoencoder, the
geometry autoencoder, the analysis autoencoder, and the synthesis autoencoder)were
trained for increasing values of the dimensionality of the latent space, N . The results
of this study are provided in Fig. 7. The horizontal axis shows dimensionality of the
latent space and the vertical axis shows network validation accuracy (specifically,
the percentage of variance explained by the trained network).

The data for the spectrum autoencoder is relatively flat, indicating that a small
number of latent dimensions are sufficient to accurately reconstruct that data. The
geometry autoencoder, in contrast, shows consistently increasing accuracy up to
approximately 16 dimensions, at which point it begins to decrease. The analysis
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and synthesis networks (which make use of portions of the autoencoders) continue
to increase. However, training time increases substantially for larger latent spaces.
Based on this study, a latent space dimensionality of 16 was selected as all networks
are at or near maximum accuracy for this value.

Autoencoders

The force spectra autoencoderwas trained for 100 epochswith a batch size of 100.The
final mean squared error on the testing dataset was 9.90×109. The total variance of
the training data was 5.89×1010 yielding a coefficient of determination of 0.83. This
indicates that this autoencoder can account for approximately 83% of the variance
observed in the training data. Several randomly selected examples of original and
reconstructed spectra are provided inFig. 8.Although the curves are not reconstructed
exactly, in all cases the reconstructed curves tend to share many similarities with the
original curves. These similarities include slope, range, and the location of maxima
and minima. However, some distinct differences become apparent for spectra that
have low values. For instances, in Fig. 8a, b, the green spectrum (corresponding
to pitch) is nearly flat in the original. The reconstructed version, however, shows
significantly higher values for that spectrum. A similar overestimation is observed
for the blue spectrum in Fig. 8d.

The geometry autoencoder was trained for 40 epochs with a batch size of 100.
The final binary cross-entropy on the testing dataset was 0.17. By comparing the
final binary cross-entropy of the model to the binary cross-entropy of a mean model
(where the value of every voxel is the average over all voxels in the dataset), it is pos-

Fig. 8 Example results for force spectrum autoencoder
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Fig. 9 Example results for offshore structure geometry autoencoder

sible to compute a coefficient of determination. The binary cross-entropy of themean
model is 3.42, yielding a coefficient of determination of 0.95. This value indicates
that this autoencoder can reconstruct approximately 95% of the variance observed in
the training data. Several randomly selected examples of original and reconstructed
geometries are provided in Fig. 9. The original and reconstructed images are practi-
cally identical in many cases. The largest differences occur near sharp features, with
the reconstructed showing a tendency to round corners and edges. In addition, flat
faces in several of the geometries can be observed to bow outwards. It is possible
that this could be corrected through the incorporation of convolutional layers in the
autoencoder to better learn features that exist across size scales.

Synthesis and Analysis

This section reports the results of the neural networks designed to accomplish analysis
and synthesis—these are the ultimate objects of the current work. These networks
utilize portions of the autoencoders trained in the previous sections. Specifically,
the network trained to perform analysis utilizes the encoder for voxel geometry and
the decoder for force spectra. Conversely, the network trained for synthesis uses the
encoder for force spectra and the decoder for voxel geometry.

The analysis network was trained for 25 epochs with a batch size of 100. The final
mean squared error on the testing dataset was 7.49×109, yielding a coefficient of
determination of 0.87. Figure 10 shows several examples for the analysis network.
From left to right, each example includes the geometry provided to the network as
an input, the true spectra (the set of spectra produced by the geometry in NEMOH),
and the predicted spectra (the output from the network). The characteristics of the



14 C. McComb

predicted spectra are similar in some ways to the reconstructed spectra in Fig. 8.
The analysis network correctly predicts qualitative aspects of the curves, accurately
producing curves with slopes, maxima/minima, and ranges that are similar to the true
spectra. However, like the autoencoder, the analysis network tends to overestimate
low values. This is evidenced in Fig. 10b, c. In addition, the true spectrum in Fig. 10c
shows a very specific cusp feature which does not appear in the predicted spectrum.
It is likely that cusp features of this type were rare in the training data, and thus are
filtered out by the spectra decoder.

The analysis network was trained for 25 epochs with a batch size of 100. The
final binary cross-entropy on the testing dataset was 0.45, yielding a coefficient of
determination of 0.90. Figure 11 shows several examples of the synthesis network.
From left to right, each example includes the set of spectra that was used as input,
the true geometry (the geometry originally used to produce the input spectra in
NEMOH), and the predicted geometry (the output from the network). In some of
these examples, the synthesized geometry shows distinct departures from the true
geometry. Sharp corners tend to be rounded off and flat faces bow outward slightly.
This is expected, since similar behavior was observed in the geometry autoencoder.

In addition, it appears that in Fig. 11c a cone-type geometry was synthesized
for what should have been a wedge. Similarly, in Fig. 11d, a square geometry was
synthesized in place of what should have been a cylinder. At this point, the reason
behind such idiosyncrasies is unclear. One possibility is that the departure from
expected performance is due to simple errors in the synthesis. On the other hand, the
synthesis network may have created a different geometry that provides force spectra
that are very similar to what was desired. This will be a subject of future work.

The analysis and synthesis networks potentially provide very real utility for
designers of offshore structure. The force spectra that are produced with the analysis
network are important for simulation of offshore structures. However, the produc-
tion of force spectra using BIEM methodology can take minutes for a simple mesh,
which precludes the direct use of the approach in many optimization algorithms
which might require tens of thousands of iterations. The use of the analysis net-
work as an approximate BIEMmakes the direct use of optimization algorithms more
feasible.

Regarding the synthesis network, the ocean waves at a given location can be
characterizedwith a power-frequency spectrum similar to the force spectra computed
for the structure. If the peaks on thewave and device spectra align, then the devicewill
absorb significant energy from thewaves; if the peaks do not align, energy absorption
is mitigated. Thus, many designers can estimate a desirable force spectrum for the
structure based on known characteristics of the installation location, and use the
synthesis network to directly generate a suitable geometry.
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Fig. 10 Example results for analysis network



16 C. McComb

Fig. 11 Example results for synthesis network
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Conclusions

The design of modern systems and products typically involves intensive computa-
tional analysis. For domains such as the design of offshore structures, these analyses
can be particularly time-consuming. Standard methods for evaluating and synthe-
sizing WECs and other offshore structure are too computationally expensive to effi-
ciently implementwithinmodern optimization and design algorithms. Thiswork pre-
sented an autoencoder-based methodology for rapidly synthesizing and evaluating
engineered systems in a space of reduced complexity, and applied that methodology
to the synthesis and analysis of offshore structures.

The first step in the proposed methodology is the generation of data consisting of
paired system design and performance information. In the offshore structure applica-
tion of this paper, this consisted of voxel-based geometry paired with force spectra.
The second step is the creation of two autoencoders that can compress and recon-
struct both the system design and the performance information. The autoencoder for
the force spectra achieved an overall reconstructive accuracy of 0.83, and provided
strong qualitative reconstruction of the inputs (matching approximate range and loca-
tion of maxima). The autoencoder for the voxelized geometry achieved an accuracy
of 0.95 showing a strong ability to reconstruct common offshore structures, albeit
with a propensity for rounding sharp corners. The third step of the methodology is
the construction of networks for synthesis and analysis by reusing portions of the
autoencoders. The analysis network (predicting force spectra based on geometry)
achieved an accuracy of 0.87 and the synthesis network (predicting geometry based
on design spectra) achieved an accuracy of 0.90. These results demonstrate that the
proposed deep learning methodology is a promising means for accomplishing the
rapid design of engineered systems.

Future work should investigate methods for increasing the accuracy of the autoen-
coders used here, as they are likely the limiting factor in the final accuracy of the
analysis and synthesis networks. It may be possible to increase autoencoder accuracy
through the use of convolutional layers [10] or the incorporation of generative adver-
sarial network constructs [38]. In addition, the inclusion of eXplainable Artificial
Intelligence (XAI) concepts [39–42] in conjunction with convolutional layers could
provide designers with voxelized features that are aligned with high-performance
solutions. Furthermore, although the geometries constructed by the synthesis net-
work only differ slightly from the true geometries, the actual performance of the
synthesized geometries is unknown. Future work should use NEMOH or another
BIEM tool to directly evaluate the actual performance of synthesized geometries. In
a similar vein, mapping differences between predicted and actual performance could
indicate regions of the space that are particularly high performance.

Extensions of this work should also test the proposed methodology in other
domains.As noted in the background section of this paper,machine learning for three-
dimensional data is still nascent, particularly for synthesis tasks (typically referred
to in machine learning as “generative” algorithms). Engineering design provides a
large quantity of structured, three-dimensional data in the form of CADfiles and pro-
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totyped designs. Particularly, promising sources of training data include GradCAD
and Thingiverse, online design communities in which users contribute 3D models.
The existence of these, and other, sources of structured data positions the engineering
design community as a future driving force in the evolution of generative machine
learning methods.
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