Spaces:
Sleeping
Sleeping
Commit
·
488f10b
1
Parent(s):
42091c4
Updating to get the model imports to work
Browse files- app.py +197 -53
- requirements.txt +1 -0
app.py
CHANGED
@@ -7,78 +7,210 @@ from transformers import TFAutoModel
|
|
7 |
# Needed for importing torch to use in the transformers model
|
8 |
import torch
|
9 |
import tensorflow
|
|
|
10 |
# HELLO HUGGING FACE
|
11 |
|
12 |
|
13 |
-
def basic_box_array(image_size
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
A = np.ones((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
21 |
-
A[1:-1, 1:-1] = 0 # replaces all internal rows/columns with 0's
|
22 |
-
A = add_thickness(A, thickness)
|
23 |
return A
|
24 |
|
25 |
|
26 |
-
def back_slash_array(image_size
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
"""
|
33 |
-
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
34 |
-
np.fill_diagonal(A, 1) # fills the diagonal with 1 values
|
35 |
-
A = add_thickness(A, thickness)
|
36 |
return A
|
37 |
|
38 |
|
39 |
-
def forward_slash_array(image_size
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
"""
|
46 |
-
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
47 |
-
np.fill_diagonal(np.fliplr(A), 1) # Flips the array to then fill the diagonal the opposite direction
|
48 |
-
A = add_thickness(A, thickness)
|
49 |
return A
|
50 |
|
51 |
|
52 |
-
def hot_dog_array(image_size
|
53 |
-
"""
|
54 |
-
:param image_size: [int] - the size of the image that will be produced
|
55 |
-
:param thickness: [int] - the number of pixels to be activated surrounding the base shape
|
56 |
-
:return: [ndarray] - the output is a unit cell with outer pixel activated from the vertical center based on the
|
57 |
-
desired thickness. The activated pixels are 1 (white) and the deactivated pixels are 0 (black)
|
58 |
-
"""
|
59 |
# Places pixels down the vertical axis to split the box
|
60 |
-
A =
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
64 |
return A
|
65 |
|
66 |
|
67 |
-
def hamburger_array(image_size
|
68 |
-
"""
|
69 |
-
:param image_size: [int] - the size of the image that will be produced
|
70 |
-
:param thickness: [int] - the number of pixels to be activated surrounding the base shape
|
71 |
-
:return: [ndarray] - the output is a unit cell with outer pixel activated from the horizontal center based on the
|
72 |
-
desired thickness. The activated pixels are 1 (white) and the deactivated pixels are 0 (black)
|
73 |
-
"""
|
74 |
# Places pixels across the horizontal axis to split the box
|
75 |
-
A =
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
79 |
return A
|
80 |
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
########################################################################################################################
|
83 |
# The function to add thickness to struts in an array
|
84 |
def add_thickness(array_original, thickness: int) -> np.ndarray:
|
@@ -135,6 +267,18 @@ thickness_2 = st.selectbox("Thickness 2", thickness_options)
|
|
135 |
interp_length = st.selectbox("Interpolation Length", interpolation_options)
|
136 |
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
# Load the models from existing huggingface model
|
139 |
# Load the encoder model
|
140 |
# encoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-encoder")
|
@@ -142,5 +286,5 @@ encoder_model = TFAutoModel.from_pretrained("cmudrc/2d-lattice-encoder")
|
|
142 |
# Load the decoder model
|
143 |
# decoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-decoder")
|
144 |
decoder_model = TFAutoModel.from_pretrained("cmudrc/2d-lattice-decoder")
|
145 |
-
|
146 |
|
|
|
7 |
# Needed for importing torch to use in the transformers model
|
8 |
import torch
|
9 |
import tensorflow
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
# HELLO HUGGING FACE
|
12 |
|
13 |
|
14 |
+
def basic_box_array(image_size):
|
15 |
+
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
16 |
+
# Creates the outside edges of the box
|
17 |
+
for i in range(image_size):
|
18 |
+
for j in range(image_size):
|
19 |
+
if i == 0 or j == 0 or i == image_size - 1 or j == image_size - 1:
|
20 |
+
A[i][j] = 1
|
|
|
|
|
|
|
21 |
return A
|
22 |
|
23 |
|
24 |
+
def back_slash_array(image_size):
|
25 |
+
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
26 |
+
for i in range(image_size):
|
27 |
+
for j in range(image_size):
|
28 |
+
if i == j:
|
29 |
+
A[i][j] = 1
|
|
|
|
|
|
|
|
|
30 |
return A
|
31 |
|
32 |
|
33 |
+
def forward_slash_array(image_size):
|
34 |
+
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
35 |
+
for i in range(image_size):
|
36 |
+
for j in range(image_size):
|
37 |
+
if i == (image_size - 1) - j:
|
38 |
+
A[i][j] = 1
|
|
|
|
|
|
|
|
|
39 |
return A
|
40 |
|
41 |
|
42 |
+
def hot_dog_array(image_size):
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# Places pixels down the vertical axis to split the box
|
44 |
+
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
45 |
+
for i in range(image_size):
|
46 |
+
for j in range(image_size):
|
47 |
+
if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2):
|
48 |
+
A[i][j] = 1
|
49 |
return A
|
50 |
|
51 |
|
52 |
+
def hamburger_array(image_size):
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
# Places pixels across the horizontal axis to split the box
|
54 |
+
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
55 |
+
for i in range(image_size):
|
56 |
+
for j in range(image_size):
|
57 |
+
if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2):
|
58 |
+
A[i][j] = 1
|
59 |
return A
|
60 |
|
61 |
|
62 |
+
def center_array(image_size):
|
63 |
+
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
64 |
+
for i in range(image_size):
|
65 |
+
for j in range(image_size):
|
66 |
+
if i == math.floor((image_size - 1) / 2) and j == math.ceil((image_size - 1) / 2):
|
67 |
+
A[i][j] = 1
|
68 |
+
if i == math.floor((image_size - 1) / 2) and j == math.floor((image_size - 1) / 2):
|
69 |
+
A[i][j] = 1
|
70 |
+
if j == math.ceil((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
|
71 |
+
A[i][j] = 1
|
72 |
+
if j == math.floor((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
|
73 |
+
A[i][j] = 1
|
74 |
+
return A
|
75 |
+
|
76 |
+
|
77 |
+
def update_array(array_original, array_new, image_size):
|
78 |
+
A = array_original
|
79 |
+
for i in range(image_size):
|
80 |
+
for j in range(image_size):
|
81 |
+
if array_new[i][j] == 1:
|
82 |
+
A[i][j] = 1
|
83 |
+
return A
|
84 |
+
|
85 |
+
|
86 |
+
def add_pixels(array_original, additional_pixels, image_size):
|
87 |
+
# Adds pixels to the thickness of each component of the box
|
88 |
+
A = array_original
|
89 |
+
A_updated = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
90 |
+
for dens in range(additional_pixels):
|
91 |
+
for i in range(1, image_size - 1):
|
92 |
+
for j in range(1, image_size - 1):
|
93 |
+
if A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1] > 0:
|
94 |
+
A_updated[i][j] = 1
|
95 |
+
A = update_array(A, A_updated, image_size)
|
96 |
+
return A
|
97 |
+
|
98 |
+
|
99 |
+
def basic_box(additional_pixels, density, image_size):
|
100 |
+
A = basic_box_array(image_size) # Creates the outside edges of the box
|
101 |
+
# Increase the thickness of each part of the box
|
102 |
+
A = add_pixels(A, additional_pixels, image_size)
|
103 |
+
return A * density
|
104 |
+
|
105 |
+
|
106 |
+
def horizontal_vertical_box_split(additional_pixels, density, image_size):
|
107 |
+
A = basic_box_array(image_size) # Creates the outside edges of the box
|
108 |
+
# Place pixels across the horizontal and vertical axes to split the box
|
109 |
+
A = update_array(A, hot_dog_array(image_size), image_size)
|
110 |
+
A = update_array(A, hamburger_array(image_size), image_size)
|
111 |
+
# Increase the thickness of each part of the box
|
112 |
+
A = add_pixels(A, additional_pixels, image_size)
|
113 |
+
return A * density
|
114 |
+
|
115 |
+
|
116 |
+
def diagonal_box_split(additional_pixels, density, image_size):
|
117 |
+
A = basic_box_array(image_size) # Creates the outside edges of the box
|
118 |
+
|
119 |
+
# Add pixels along the diagonals of the box
|
120 |
+
A = update_array(A, back_slash_array(image_size), image_size)
|
121 |
+
A = update_array(A, forward_slash_array(image_size), image_size)
|
122 |
+
|
123 |
+
# Adds pixels to the thickness of each component of the box
|
124 |
+
# Increase the thickness of each part of the box
|
125 |
+
A = add_pixels(A, additional_pixels, image_size)
|
126 |
+
return A * density
|
127 |
+
|
128 |
+
|
129 |
+
def back_slash_box(additional_pixels, density, image_size):
|
130 |
+
A = basic_box_array(image_size) # Initializes A matrix with 0 values
|
131 |
+
A = update_array(A, back_slash_array(image_size), image_size)
|
132 |
+
A = add_pixels(A, additional_pixels, image_size)
|
133 |
+
return A * density
|
134 |
+
|
135 |
+
|
136 |
+
def forward_slash_box(additional_pixels, density, image_size):
|
137 |
+
A = basic_box_array(image_size) # Initializes A matrix with 0 values
|
138 |
+
A = update_array(A, forward_slash_array(image_size), image_size)
|
139 |
+
A = add_pixels(A, additional_pixels, image_size)
|
140 |
+
return A * density
|
141 |
+
|
142 |
+
|
143 |
+
def hot_dog_box(additional_pixels, density, image_size):
|
144 |
+
A = basic_box_array(image_size) # Initializes A matrix with 0 values
|
145 |
+
A = update_array(A, hot_dog_array(image_size), image_size)
|
146 |
+
A = add_pixels(A, additional_pixels, image_size)
|
147 |
+
return A * density
|
148 |
+
|
149 |
+
|
150 |
+
def hamburger_box(additional_pixels, density, image_size):
|
151 |
+
A = basic_box_array(image_size) # Initializes A matrix with 0 values
|
152 |
+
A = update_array(A, hamburger_array(image_size), image_size)
|
153 |
+
A = add_pixels(A, additional_pixels, image_size)
|
154 |
+
return A * density
|
155 |
+
|
156 |
+
|
157 |
+
def x_plus_box(additional_pixels, density, image_size):
|
158 |
+
A = basic_box_array(image_size) # Initializes A matrix with 0 values
|
159 |
+
A = update_array(A, hot_dog_array(image_size), image_size)
|
160 |
+
A = update_array(A, hamburger_array(image_size), image_size)
|
161 |
+
A = update_array(A, forward_slash_array(image_size), image_size)
|
162 |
+
A = update_array(A, back_slash_array(image_size), image_size)
|
163 |
+
A = add_pixels(A, additional_pixels, image_size)
|
164 |
+
return A * density
|
165 |
+
|
166 |
+
|
167 |
+
def forward_slash_plus_box(additional_pixels, density, image_size):
|
168 |
+
A = basic_box_array(image_size) # Initializes A matrix with 0 values
|
169 |
+
A = update_array(A, hot_dog_array(image_size), image_size)
|
170 |
+
A = update_array(A, hamburger_array(image_size), image_size)
|
171 |
+
A = update_array(A, forward_slash_array(image_size), image_size)
|
172 |
+
# A = update_array(A, back_slash_array(image_size), image_size)
|
173 |
+
A = add_pixels(A, additional_pixels, image_size)
|
174 |
+
return A * density
|
175 |
+
|
176 |
+
|
177 |
+
def back_slash_plus_box(additional_pixels, density, image_size):
|
178 |
+
A = basic_box_array(image_size) # Initializes A matrix with 0 values
|
179 |
+
A = update_array(A, hot_dog_array(image_size), image_size)
|
180 |
+
A = update_array(A, hamburger_array(image_size), image_size)
|
181 |
+
# A = update_array(A, forward_slash_array(image_size), image_size)
|
182 |
+
A = update_array(A, back_slash_array(image_size), image_size)
|
183 |
+
A = add_pixels(A, additional_pixels, image_size)
|
184 |
+
return A * density
|
185 |
+
|
186 |
+
|
187 |
+
def x_hot_dog_box(additional_pixels, density, image_size):
|
188 |
+
A = basic_box_array(image_size) # Initializes A matrix with 0 values
|
189 |
+
A = update_array(A, hot_dog_array(image_size), image_size)
|
190 |
+
# A = update_array(A, hamburger_array(image_size), image_size)
|
191 |
+
A = update_array(A, forward_slash_array(image_size), image_size)
|
192 |
+
A = update_array(A, back_slash_array(image_size), image_size)
|
193 |
+
A = add_pixels(A, additional_pixels, image_size)
|
194 |
+
return A * density
|
195 |
+
|
196 |
+
|
197 |
+
def x_hamburger_box(additional_pixels, density, image_size):
|
198 |
+
A = basic_box_array(image_size) # Initializes A matrix with 0 values
|
199 |
+
# A = update_array(A, hot_dog_array(image_size), image_size)
|
200 |
+
A = update_array(A, hamburger_array(image_size), image_size)
|
201 |
+
A = update_array(A, forward_slash_array(image_size), image_size)
|
202 |
+
A = update_array(A, back_slash_array(image_size), image_size)
|
203 |
+
A = add_pixels(A, additional_pixels, image_size)
|
204 |
+
return A * density
|
205 |
+
|
206 |
+
|
207 |
+
def center_box(additional_pixels, density, image_size):
|
208 |
+
A = basic_box_array(image_size) # Initializes A matrix with 0 values
|
209 |
+
A = update_array(A, center_array(image_size), image_size)
|
210 |
+
A = add_pixels(A, additional_pixels, image_size)
|
211 |
+
return A * density
|
212 |
+
|
213 |
+
|
214 |
########################################################################################################################
|
215 |
# The function to add thickness to struts in an array
|
216 |
def add_thickness(array_original, thickness: int) -> np.ndarray:
|
|
|
267 |
interp_length = st.selectbox("Interpolation Length", interpolation_options)
|
268 |
|
269 |
|
270 |
+
def generate_unit_cell(shape, density, thickness):
|
271 |
+
return globals()[shape](int(thickness), float(density), 28)
|
272 |
+
|
273 |
+
if st.button("Generate Endpoint Images"):
|
274 |
+
plt.figure(1)
|
275 |
+
st.header("Endpoints to be generated:")
|
276 |
+
plt.subplot(1, 2, 1), plt.imshow(generate_unit_cell(shape_1, density_1, thickness_1), cmap='gray', vmin=0, vmax=1)
|
277 |
+
plt.subplot(1, 2, 2), plt.imshow(generate_unit_cell(shape_2, density_2, thickness_2), cmap='gray', vmin=0, vmax=1)
|
278 |
+
plt.figure(1)
|
279 |
+
st.pyplot(plt.figure(1))
|
280 |
+
|
281 |
+
'''
|
282 |
# Load the models from existing huggingface model
|
283 |
# Load the encoder model
|
284 |
# encoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-encoder")
|
|
|
286 |
# Load the decoder model
|
287 |
# decoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-decoder")
|
288 |
decoder_model = TFAutoModel.from_pretrained("cmudrc/2d-lattice-decoder")
|
289 |
+
'''
|
290 |
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
huggingface_hub==0.12.0
|
|
|
2 |
numpy==1.21.5
|
3 |
scipy==1.9.1
|
4 |
streamlit==1.18.1
|
|
|
1 |
huggingface_hub==0.12.0
|
2 |
+
matplotlib==3.5.2
|
3 |
numpy==1.21.5
|
4 |
scipy==1.9.1
|
5 |
streamlit==1.18.1
|