marta-marta commited on
Commit
470fd34
·
1 Parent(s): 3ed364c

Modifying the figures to be published

Browse files
Files changed (1) hide show
  1. app.py +19 -18
app.py CHANGED
@@ -318,8 +318,24 @@ for column in range(latent_dimensionality):
318
  latent_matrix = np.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed
319
  ########################################################################################################################
320
  # Plotting the Interpolation in 2D Using Chosen Points
321
- if st.button("Generate Interpolation:"):
322
  plt.figure(2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323
  """
324
  plot_rows = 2
325
  plot_columns = num_interp + 2
@@ -342,19 +358,6 @@ if st.button("Generate Interpolation:"):
342
  # plt.title("Second Interpolation Point:\n" + str(box_shape_test[number_2]) + "\nPixel Density: " + str(
343
  # box_density_test[number_2]) + "\nAdditional Pixels: " + str(additional_pixels_test[number_2])) # + "\nPredicted Latent Point 2: " + str(latent_point_2)
344
  """
345
- linear_interp_latent = np.linspace(latent_point_1, latent_point_2, num_interp)
346
- print(len(linear_interp_latent))
347
-
348
- linear_predicted_interps = []
349
- figure = np.zeros((28 * num_interp, 28))
350
- for i in range(num_interp):
351
- generated_image = decoder_model_boxes.predict(np.array([linear_interp_latent[i]]))[0]
352
- figure[i * 28:(i + 1) * 28, 0:28, ] = generated_image[:, :, -1]
353
- linear_predicted_interps.append(generated_image[:, :, -1])
354
-
355
- plt.figure(figsize=(15, 15))
356
- plt.imshow(figure, cmap='gray')
357
-
358
  '''
359
  latent_matrix_2 = [] # This will contain the latent points of the interpolation
360
  for column in range(latent_dimensionality):
@@ -378,9 +381,7 @@ if st.button("Generate Interpolation:"):
378
  generated_image = generator_model.predict(np.array([mesh[i][j]]))[0]
379
  figure[i * 28:(i + 1) * 28, j * 28:(j + 1) * 28, ] = generated_image[:, :, -1]
380
  mesh_predicted_interps.append(generated_image[:, :, -1])
381
-
382
  plt.figure(figsize=(15, 15))
383
  plt.imshow(figure, cmap='gray')
384
- '''
385
- plt.figure(2)
386
- st.pyplot(plt.figure(2))
 
318
  latent_matrix = np.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed
319
  ########################################################################################################################
320
  # Plotting the Interpolation in 2D Using Chosen Points
321
+ if st.button("Generate Interpolation"):
322
  plt.figure(2)
323
+
324
+ linear_interp_latent = np.linspace(latent_point_1, latent_point_2, num_interp)
325
+ print(len(linear_interp_latent))
326
+
327
+ linear_predicted_interps = []
328
+ figure = np.zeros((28 * num_interp, 28))
329
+ for i in range(num_interp):
330
+ generated_image = decoder_model_boxes.predict(np.array([linear_interp_latent[i]]))[0]
331
+ figure[i * 28:(i + 1) * 28, 0:28, ] = generated_image[:, :, -1]
332
+ linear_predicted_interps.append(generated_image[:, :, -1])
333
+
334
+ plt.figure(figsize=(15, 15))
335
+ # plt.imshow(figure, cmap='gray')
336
+ plt.figure(2)
337
+ st.pyplot(plt.figure(2))
338
+
339
  """
340
  plot_rows = 2
341
  plot_columns = num_interp + 2
 
358
  # plt.title("Second Interpolation Point:\n" + str(box_shape_test[number_2]) + "\nPixel Density: " + str(
359
  # box_density_test[number_2]) + "\nAdditional Pixels: " + str(additional_pixels_test[number_2])) # + "\nPredicted Latent Point 2: " + str(latent_point_2)
360
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
361
  '''
362
  latent_matrix_2 = [] # This will contain the latent points of the interpolation
363
  for column in range(latent_dimensionality):
 
381
  generated_image = generator_model.predict(np.array([mesh[i][j]]))[0]
382
  figure[i * 28:(i + 1) * 28, j * 28:(j + 1) * 28, ] = generated_image[:, :, -1]
383
  mesh_predicted_interps.append(generated_image[:, :, -1])
384
+
385
  plt.figure(figsize=(15, 15))
386
  plt.imshow(figure, cmap='gray')
387
+ '''