Spaces:
Sleeping
Sleeping
shawnljw
commited on
Commit
·
52983bc
1
Parent(s):
05ccb0c
create web ui
Browse files
app.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import cv2
|
| 4 |
+
from tqdm import trange
|
| 5 |
+
|
| 6 |
+
class KMeansClustering():
|
| 7 |
+
def __init__(self, n_clusters=8, max_iter=300):
|
| 8 |
+
self.n_clusters = n_clusters
|
| 9 |
+
self.max_iter = max_iter
|
| 10 |
+
|
| 11 |
+
def fit(self, X):
|
| 12 |
+
self.inertia_ = float('inf')
|
| 13 |
+
|
| 14 |
+
# random init of clusters
|
| 15 |
+
idx = np.random.choice(range(X.shape[0]), self.n_clusters, replace=False)
|
| 16 |
+
self.cluster_centers_ = X[idx]
|
| 17 |
+
|
| 18 |
+
print(f'Training for {self.max_iter} epochs')
|
| 19 |
+
epochs = trange(self.max_iter)
|
| 20 |
+
for i in epochs:
|
| 21 |
+
distances = X[:, np.newaxis, :] - self.cluster_centers_[np.newaxis, :, :]
|
| 22 |
+
distances = np.linalg.norm(distances, axis=2)
|
| 23 |
+
self.labels_ = np.argmin(distances, axis=1)
|
| 24 |
+
new_inertia = np.sum(np.min(distances, axis=1) ** 2)
|
| 25 |
+
|
| 26 |
+
epochs.set_description(f'Epoch-{i+1}, Inertia-{new_inertia}')
|
| 27 |
+
|
| 28 |
+
if new_inertia < self.inertia_:
|
| 29 |
+
self.inertia_ = new_inertia
|
| 30 |
+
else:
|
| 31 |
+
epochs.close()
|
| 32 |
+
print('Early Stopping. Inertia has converged.')
|
| 33 |
+
break
|
| 34 |
+
|
| 35 |
+
self.cluster_centers_ = np.empty_like(self.cluster_centers_)
|
| 36 |
+
for cluster in range(self.n_clusters):
|
| 37 |
+
in_cluster = (self.labels_ == cluster)
|
| 38 |
+
if np.any(in_cluster):
|
| 39 |
+
self.cluster_centers_[cluster] = np.mean(X[in_cluster], axis=0)
|
| 40 |
+
else:
|
| 41 |
+
# cluster is empty, pick random point as next centroid
|
| 42 |
+
self.cluster_centers_[cluster] = X[np.random.randint(0, X.shape[0])]
|
| 43 |
+
|
| 44 |
+
return self
|
| 45 |
+
|
| 46 |
+
def predict(self, X):
|
| 47 |
+
distances = X[:, np.newaxis, :] - self.cluster_centers_[np.newaxis, :, :]
|
| 48 |
+
distances = np.linalg.norm(distances, axis=2)
|
| 49 |
+
labels = np.argmin(distances, axis=1)
|
| 50 |
+
return labels
|
| 51 |
+
|
| 52 |
+
def fit_predict(self, X):
|
| 53 |
+
return self.fit(X).labels_
|
| 54 |
+
|
| 55 |
+
def segment_image(image, model: KMeansClustering):
|
| 56 |
+
w, b, c = image.shape
|
| 57 |
+
image = image.reshape(w*b, c) / 255
|
| 58 |
+
|
| 59 |
+
idx = np.random.choice(range(image.shape[0]), image.shape[0]//5, replace=False)
|
| 60 |
+
image_subset = image[idx]
|
| 61 |
+
model.fit(image_subset) # fit model on 20% sample of image
|
| 62 |
+
|
| 63 |
+
labels = model.predict(image)
|
| 64 |
+
return labels.reshape(w,b), model
|
| 65 |
+
|
| 66 |
+
def generate_outputs(image):
|
| 67 |
+
model = KMeansClustering(n_clusters=24, max_iter=10)
|
| 68 |
+
label_map, model = segment_image(image, model)
|
| 69 |
+
|
| 70 |
+
clustered_image = model.cluster_centers_[label_map]
|
| 71 |
+
clustered_image = (clustered_image * 255).astype('uint8')
|
| 72 |
+
clustered_image = cv2.medianBlur(clustered_image,5)
|
| 73 |
+
edges = 255 - cv2.Canny(clustered_image, 0, 1)
|
| 74 |
+
edges = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
|
| 75 |
+
|
| 76 |
+
return [(edges, 'Coloring Page'), (clustered_image, 'Filled Picture')]
|
| 77 |
+
|
| 78 |
+
with gr.Blocks() as demo:
|
| 79 |
+
gr.Markdown(
|
| 80 |
+
"""
|
| 81 |
+
# image2coloringbook
|
| 82 |
+
|
| 83 |
+
(image2coloringbook)[https://github.com/ShawnLJW/image2coloringbook] is a simple tool that converts an image into a coloring book.
|
| 84 |
+
""")
|
| 85 |
+
with gr.Row():
|
| 86 |
+
with gr.Column():
|
| 87 |
+
image = gr.Image()
|
| 88 |
+
submit = gr.Button('Generate')
|
| 89 |
+
with gr.Column():
|
| 90 |
+
output = gr.Gallery()
|
| 91 |
+
submit.click(
|
| 92 |
+
generate_outputs,
|
| 93 |
+
inputs=[image],
|
| 94 |
+
outputs=[output]
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
if __name__ == '__main__':
|
| 98 |
+
demo.launch()
|