File size: 9,370 Bytes
9f0b3d4
13ba67a
99ab61a
 
 
203e40c
 
 
 
dc82736
13ba67a
9f0b3d4
99ab61a
 
 
13ba67a
 
 
 
 
 
 
 
 
4731312
13ba67a
 
 
 
 
 
 
 
 
 
 
99ab61a
 
 
 
 
 
3401663
 
99ab61a
 
 
 
9f0b3d4
 
13ba67a
9f0b3d4
 
 
 
 
13ba67a
99ab61a
13ba67a
99ab61a
 
 
 
 
9f0b3d4
 
 
 
 
 
 
 
 
 
 
 
 
 
99ab61a
 
9f0b3d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4731312
99ab61a
9f0b3d4
 
 
 
4731312
99ab61a
9f0b3d4
 
 
 
 
 
 
 
 
 
 
 
 
 
203e40c
9f0b3d4
 
203e40c
9f0b3d4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gradio as gr
from datasets import load_dataset
import datetime
from pbs_data import PBSPublicDataAPIClient
import os
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.triggers.interval import IntervalTrigger
import atexit

HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_NAME = "cmcmaster/rheumatology-biologics-dataset"
UPDATE_INTERVAL = 1

def load_data():
    try:
        dataset = load_dataset(DATASET_NAME, split="train")
        
        # Create sets for dropdown options
        drugs = set(dataset['drug'])
        brands = set(dataset['brand'])
        formulations = set(dataset['formulation'])
        indications = set(dataset['indication'])
        treatment_phases = set(dataset['treatment_phase'])
        hospital_types = set(dataset['hospital_type'])

        return {
            'combinations': dataset,
            'drugs': sorted(drugs),
            'brands': sorted(brands),
            'formulations': sorted(formulations),
            'indications': sorted(indications),
            'treatment_phases': sorted(treatment_phases),
            'hospital_types': sorted(hospital_types)
        }
    except Exception as e:
        print(f"An error occurred while loading data: {str(e)}")
        return {
            'combinations': [],
            'drugs': [],
            'brands': [],
            'formulations': [],
            'indications': [],
            'treatment_phases': [],
            'hospital_types': []
        }

biologics_data = load_data()

def search_biologics(drug, brand, formulation, indication, treatment_phase, hospital_type, state):
    results = state['combinations'].filter(
        lambda x: (not drug or x['drug'] == drug) and
                 (not brand or x['brand'] == brand) and
                 (not formulation or x['formulation'] == formulation) and
                 (not indication or x['indication'] == indication) and
                 (not treatment_phase or x['treatment_phase'] == treatment_phase) and
                 (not hospital_type or x['hospital_type'] == hospital_type)
    )
    
    if len(results) == 0:
        return "No results found."
    
    output = ""
    for item in results:
        output += f"""
### {item['drug']} ({item['brand']})

* **PBS Code:** [{item['pbs_code']}](https://www.pbs.gov.au/medicine/item/{item['pbs_code']})
* **Formulation:** {item['formulation']}
* **Indication:** {item['indication']}
* **Treatment Phase:** {item['treatment_phase']}
* **Streamlined Code:** {item['streamlined_code'] or 'N/A'}
* **Authority Method:** {item['authority_method']}
* **Online Application:** {'Yes' if item['online_application'] else 'No'}
* **Hospital Type:** {item['hospital_type']}
* **Schedule:** {item['schedule_month']} {item['schedule_year']}

---
"""
    return output

def update_data():
    # Check the date - if it's the first day of the month then update the data, otherwise
    if datetime.datetime.now().day == 1:
        print(f"Updating data at {datetime.datetime.now()}")
        client = PBSPublicDataAPIClient("2384af7c667342ceb5a736fe29f1dc6b", rate_limit=0.2)
        try:
            data = client.fetch_rheumatology_biologics_data()
            client.save_data_to_hf(data, HF_TOKEN, DATASET_NAME)
            print("Data updated successfully")
            global biologics_data
            biologics_data = load_data()
        except Exception as e:
            print(f"An error occurred while updating data: {str(e)}")
    else:
        print(f"Not updating data at {datetime.datetime.now()}")

def create_interface():
    with gr.Blocks(title="Biologics Prescriber Helper") as demo:
        gr.Markdown("# Biologics Prescriber Helper")
        
        # Create session state to store filtered data for each user
        session_data = gr.State(biologics_data)
        
        def update_dropdown_choices(drug, brand, formulation, indication, treatment_phase, hospital_type, state):
            # Filter the dataset based on current selections
            filtered = state['combinations'].filter(
                lambda x: (not drug or x['drug'] == drug) and
                         (not brand or x['brand'] == brand) and
                         (not formulation or x['formulation'] == formulation) and
                         (not indication or x['indication'] == indication) and
                         (not treatment_phase or x['treatment_phase'] == treatment_phase) and
                         (not hospital_type or x['hospital_type'] == hospital_type)
            )
            
            # Get unique values for each field from filtered dataset
            available_options = {
                'drugs': [""] + sorted(set(filtered['drug'])),
                'brands': [""] + sorted(set(filtered['brand'])),
                'formulations': [""] + sorted(set(filtered['formulation'])),
                'indications': [""] + sorted(set(filtered['indication'])),
                'treatment_phases': [""] + sorted(set(filtered['treatment_phase'])),
                'hospital_types': [""] + sorted(set(filtered['hospital_type']))
            }
            
            # Return the choices and current values for each dropdown
            return (
                gr.Dropdown(choices=available_options['drugs'], value=drug if drug in available_options['drugs'] else ""),
                gr.Dropdown(choices=available_options['brands'], value=brand if brand in available_options['brands'] else ""),
                gr.Dropdown(choices=available_options['formulations'], value=formulation if formulation in available_options['formulations'] else ""),
                gr.Dropdown(choices=available_options['indications'], value=indication if indication in available_options['indications'] else ""),
                gr.Dropdown(choices=available_options['treatment_phases'], value=treatment_phase if treatment_phase in available_options['treatment_phases'] else ""),
                gr.Dropdown(choices=available_options['hospital_types'], value=hospital_type if hospital_type in available_options['hospital_types'] else ""),
                state  # Return state unchanged
            )

        with gr.Row():
            with gr.Column():
                drug = gr.Dropdown(
                    choices=[""] + biologics_data['drugs'],
                    label="Drug",
                    value="",
                    interactive=True
                )
                brand = gr.Dropdown(
                    choices=[""] + biologics_data['brands'],
                    label="Brand",
                    value="",
                    interactive=True
                )
                formulation = gr.Dropdown(
                    choices=[""] + biologics_data['formulations'],
                    label="Formulation",
                    value="",
                    interactive=True
                )
            
            with gr.Column():
                indication = gr.Dropdown(
                    choices=[""] + biologics_data['indications'],
                    label="Indication",
                    value="",
                    interactive=True
                )
                treatment_phase = gr.Dropdown(
                    choices=[""] + biologics_data['treatment_phases'],
                    label="Treatment Phase",
                    value="",
                    interactive=True
                )
                hospital_type = gr.Dropdown(
                    choices=[""] + biologics_data['hospital_types'],
                    label="Hospital Type",
                    value="",
                    interactive=True
                )

        with gr.Row():
            search_btn = gr.Button("Search", variant="primary")
            clear_btn = gr.Button("Reset")

        results = gr.Markdown()

        def reset_inputs(state):
            return (*update_dropdown_choices("", "", "", "", "", "", state)[:-1], state)

        # Update dropdowns when any selection changes
        all_dropdowns = [drug, brand, formulation, indication, treatment_phase, hospital_type]
        for dropdown in all_dropdowns:
            dropdown.change(
                fn=update_dropdown_choices,
                inputs=[drug, brand, formulation, indication, treatment_phase, hospital_type, session_data],
                outputs=[drug, brand, formulation, indication, treatment_phase, hospital_type, session_data]
            )

        search_btn.click(
            fn=search_biologics,
            inputs=[drug, brand, formulation, indication, treatment_phase, hospital_type, session_data],
            outputs=results
        )

        clear_btn.click(
            fn=reset_inputs,
            inputs=[session_data],
            outputs=[drug, brand, formulation, indication, treatment_phase, hospital_type, session_data]
        )

    return demo

if UPDATE_INTERVAL > 0:
    # Set up the scheduler
    update_data()
    scheduler = BackgroundScheduler()
    scheduler.add_job(
        func=update_data,
        trigger=IntervalTrigger(days=UPDATE_INTERVAL),
        id='update_data',
        name='Update Data',
        replace_existing=True
    )
    scheduler.start()

    # Shutdown scheduler when app terminates
    atexit.register(lambda: scheduler.shutdown())

# Create and launch the interface
if __name__ == "__main__":
    demo = create_interface()
    demo.launch()