import gradio as gr | |
from datasets import load_dataset | |
def greet(name): | |
return "Hello " + name + "!!" | |
#iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
#iface.launch() | |
ds = load_dataset("language-and-voice-lab/samromur_asr",split='train',streaming=True) | |
#iface = gr.Interface.load("models/carlosdanielhernandezmena/wav2vec2-large-xlsr-53-icelandic-ep10-1000h") | |
#iface.launch() | |
def show_ex(exnum): | |
return(ds[exnum]) | |
bl = gr.Blocks() | |
with bl: | |
text_input = gr.Textbox() | |
text_output = gr.Textbox() | |
text_button = gr.Button("Run") | |
text_button.click(show_ex, inputs=text_input, outputs=text_output) | |
bl.launch() | |
#https://mercury-docs.readthedocs.io/en/latest/deploy/hugging-face-spaces/ | |
#https://huggingface.co/spaces/pplonski/deploy-mercury | |
#https://discuss.huggingface.co/t/deploy-interactive-jupyter-notebook-on-spaces-with-mercury/17000 | |
#https://huggingface.co/docs/transformers/notebooks | |