pce / scripts /runSQ.py
catiR
run clustering
e2901c5
raw
history blame
9.13 kB
import os, unicodedata
from scripts.ctcalign import aligner, wav16m
from scripts.tapi import tiro
from scripts.reaper2pass import estimate_pitch, save_pitch
import scripts.clusterprosody as cl
# given a Sentence string,
# using a metadata file of SQ, // SQL1adult_metadata.tsv
# get every file from SQ of a L1 adult with that sentence
# report how many, or if 0.
def run(sentence, voices, start_end_word_ix):
#sentence = 'hvaða sjúkdómar geta fylgt óbeinum reykingum'
#voices = ['Alfur','Dilja','Karl', 'Dora']
# On tts.tiro.is speech marks are only available
# for the voices: Alfur, Dilja, Karl and Dora.
# in practise, only for alfur and dilja.
corpus_meta = '/home/user/app/human_data/SQL1adult10s_metadata.tsv'
speech_dir = '/home/user/app/human_data/audio/squeries/'
speech_aligns = '/home/user/app/human_data/align/squeries/'
speech_f0 = '/home/user/app/human_data/f0/squeries/'
align_model_path ="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-icelandic-ep10-1000h"
tts_dir = '/home/user/app/tts_data/'
norm_sentence = snorm(sentence)
meta = get_recordings(norm_sentence, corpus_meta)
if meta:
align_human(meta,speech_aligns,speech_dir,align_model_path)
f0_human(meta, speech_f0, speech_dir)
human_rec_ids = sorted([l[2].split('.wav')[0] for l in meta])
if voices:
voices = [voices[0]] # TODO. now limit one voice at a time.
tts_sample, tts_speechmarks = get_tts(sentence,voices,tts_dir)
f0_tts(sentence, voices, tts_dir)
score, fig = cl.cluster(norm_sentence, sentence, human_rec_ids, speech_aligns, speech_f0, speech_dir, tts_dir, voices, start_end_word_ix)
# also stop forgetting duration.
return tts_sample, score, fig
def snorm(s):
s = ''.join([c.lower() for c in s if not unicodedata.category(c).startswith("P") ])
while ' ' in s:
s = s.replace(' ', ' ')
return s
# find all the recordings of a given sentence
# listed in the corpus metadata.
# sentence should be provided lowercase without punctuation
# TODO something not fatal to interface if <10
def get_recordings(sentence, corpusdb):
with open(corpusdb,'r') as handle:
meta = handle.read().splitlines()
meta = [l.split('\t') for l in meta[1:]]
# column index 4 of db is normalised sentence text
smeta = [l for l in meta if l[4] == sentence]
if len(smeta) < 10:
if len(smeta) < 1:
print('This sentence does not exist in the corpus')
else:
print('Under 10 copies of the sentence: skipping.')
return []
else:
print(f'{len(smeta)} recordings of sentence <{sentence}>')
return smeta
# check if word alignments exist for a set of human speech recordings
# if not, warn, and make them with ctcalign.
def align_human(meta,align_dir,speech_dir,model_path):
model_word_sep = '|'
model_blank_tk = '[PAD]'
no_align = []
for rec in meta:
apath = align_dir + rec[2].replace('.wav','.tsv')
if not os.path.exists(apath):
no_align.append(rec)
if no_align:
print(f'Need to run alignment for {len(no_align)} files')
if not os.path.exists(align_dir):
os.makedirs(align_dir)
caligner = aligner(model_path,model_word_sep,model_blank_tk)
for rec in no_align:
#wav_path = f'{speech_dir}{rec[1]}/{rec[2]}'
wav_path = f'{speech_dir}{rec[2]}'
word_aln = caligner(wav16m(wav_path),rec[4],is_normed=True)
apath = align_dir + rec[2].replace('.wav','.tsv')
word_aln = [[str(x) for x in l] for l in word_aln]
with open(apath,'w') as handle:
handle.write(''.join(['\t'.join(l)+'\n' for l in word_aln]))
else:
print('All alignments existed')
# check if f0s exist for all of those files.
# if not, warn, and make them with TODO reaper
def f0_human(meta, f0_dir, speech_dir, reaper_path = "REAPER/build/reaper"):
no_f0 = []
for rec in meta:
fpath = f0_dir + rec[2].replace('.wav','.f0')
if not os.path.exists(fpath):
no_f0.append(rec)
if no_f0:
print(f'Need to estimate pitch for {len(no_f0)} recordings')
if not os.path.exists(f0_dir):
os.makedirs(f0_dir)
for rec in no_f0:
wav_path = f'{speech_dir}{rec[2]}'
fpath = f0_dir + rec[2].replace('.wav','.f0')
f0_data = estimate_pitch(wav_path, reaper_path)
save_pitch(f0_data,fpath)
#print('2ND PASS PITCHES OF', fpath)
#print(f0_data)
else:
print('All speech pitch trackings existed')
# check if the TTS wavs + align jsons exist for this sentence
# if not, warn and make them with TAPI ******
def get_tts(sentence,voices,ttsdir):
# assume the first 64 chars of sentence are enough
dpath = sentence.replace(' ','_')[:65]
no_voice = []
temp_sample_path = ''
for v in voices:
wpath = f'{ttsdir}{dpath}/{v}.wav'
jpath = f'{ttsdir}{dpath}/{v}.json'
if not (os.path.exists(wpath) and os.path.exists(jpath)):
no_voice.append(v)
if not temp_sample_path:
temp_sample_path = wpath
temp_json_path = jpath
if no_voice:
print(f'Need to generate TTS for {len(no_voice)} voices')
if not os.path.exists(f'{ttsdir}{dpath}'):
os.makedirs(f'{ttsdir}{dpath}')
for v in voices:
wf, af = tiro(sentence,v,save=f'{ttsdir}{dpath}/')
else:
print('TTS for all voices existed')
return temp_sample_path, temp_json_path
# check if the TTS f0s exist
# if not warn + make
# TODO collapse functions
def f0_tts(sentence, voices, ttsdir, reaper_path = "REAPER/build/reaper"):
# assume the first 64 chars of sentence are enough
dpath = sentence.replace(' ','_')[:65]
no_f0 = []
for v in voices:
fpath = f'{ttsdir}{dpath}/{v}.f0'
if not os.path.exists(fpath):
no_f0.append(v)
ttt = subprocess.run(["ls", "-la", "ttsdir"], capture_output=True, text=True)
print('LS::', ttt.stdout)
if no_f0:
print(f'Need to estimate pitch for {len(no_f0)} voices')
for v in voices:
wav_path = f'{ttsdir}{dpath}/{v}.wav'
fpath = f'{ttsdir}{dpath}/{v}.f0'
print(wav_path)
print(fpath)
f0_data = estimate_pitch(wav_path, reaper_path)
save_pitch(f0_data,fpath)
else:
print('All TTS pitch trackings existed')
def localtest():
sentence = 'Ef svo er, hvað heita þau þá?'#'Var það ekki nóg?'
voices = ['Alfur'] #,'Dilja']
# make for now the interface allows max one voice
start_end_word_ix = '5-7'
locl = '/home/caitlinr/work/peval/pce/'
corpus_meta = locl+'human_data/SQL1adult10s_metadata.tsv'
speech_dir = locl+'human_data/audio/squeries/'
speech_aligns = locl+'human_data/align/squeries/'
speech_f0 = locl+'human_data/f0/squeries/'
align_model_path ="/home/caitlinr/work/models/LVL/wav2vec2-large-xlsr-53-icelandic-ep10-1000h"
tts_dir = locl+'tts_data/'
reaper_exc = '/home/caitlinr/work/notterra/REAPER/build/reaper'
norm_sentence = snorm(sentence)
meta = get_recordings(norm_sentence, corpus_meta)
#print(meta)
if meta:
align_human(meta,speech_aligns,speech_dir,align_model_path)
f0_human(meta, speech_f0, speech_dir, reaper_path = reaper_exc )
human_rec_ids = sorted([l[2].split('.wav')[0] for l in meta])
if voices:
voices = [voices[0]] # TODO. now limit one voice at a time.
audio_sample, speechmarks = get_tts(sentence,voices,tts_dir)
f0_tts(sentence, voices, tts_dir, reaper_path = reaper_exc)
score, fig = cl.cluster(norm_sentence, sentence, human_rec_ids, speech_aligns, speech_f0, speech_dir, tts_dir, voices, start_end_word_ix)
#localtest()
# torch matplotlib librosa sklearn_extra pydub
# env pclustr
# https://colab.research.google.com/drive/1RApnJEocx3-mqdQC2h5SH8vucDkSlQYt?authuser=1#scrollTo=410ecd91fa29bc73
# EVALUATION
# - of the tts
# - of the method: consistency? coherency / interpretability of 'best' voice across different features; alt. ability to recover good & problematic features from a combined method if that is chosen as the best?
# - how similar are the results across different sentences? are any voices consistently good or bad; if multiple are good, are they good in the same way or good in different ways; do humans agree.
# >> bc hey THAT could at least be an argument for the method, u might have to take time for human judgement once but then you can keep re using it free for new voices. or to select among alternative generations given you might know a context and know what you're going for in that context. etc.