File size: 9,150 Bytes
adae0c9 048101b 2defee0 53792d8 ce4ae2c 53792d8 5c7029b 53792d8 f0fa26d 5c7029b 2defee0 5c7029b 86e56e5 cc7c120 53792d8 cc7c120 5c7029b cc7c120 f0fa26d d6846cc 5c7029b f0fa26d 5c7029b 2defee0 53792d8 5c7029b 53792d8 2defee0 53792d8 06af375 f0fa26d 53792d8 5c7029b f0fa26d 5c7029b 53792d8 5c7029b cc7c120 cc178c4 cc7c120 5c7029b e5e7284 5c7029b 53792d8 5c7029b cc7c120 cc178c4 06af375 2defee0 53792d8 2defee0 53792d8 2defee0 5c7029b f0fa26d 5c7029b f0fa26d 53792d8 5c7029b cc178c4 5c7029b f0fa26d 53792d8 5c7029b 53792d8 5c7029b e2901c5 5c7029b 2defee0 e2901c5 53792d8 2defee0 5c7029b 53792d8 5c7029b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import os, unicodedata
from scripts.ctcalign import aligner, wav16m
from scripts.tapi import tiro
from scripts.reaper2pass import estimate_pitch, save_pitch
import scripts.clusterprosody as cl
import subprocess
# given a Sentence string,
# using a metadata file of SQ, // SQL1adult_metadata.tsv
# get every file from SQ of a L1 adult with that sentence
# report how many, or if 0.
def run(sentence, voices, start_end_word_ix):
#sentence = 'hvaða sjúkdómar geta fylgt óbeinum reykingum'
#voices = ['Alfur','Dilja','Karl', 'Dora']
# On tts.tiro.is speech marks are only available
# for the voices: Alfur, Dilja, Karl and Dora.
# in practise, only for alfur and dilja.
corpus_meta = '/home/user/app/human_data/SQL1adult10s_metadata.tsv'
speech_dir = '/home/user/app/human_data/audio/squeries/'
speech_aligns = '/home/user/app/human_data/align/squeries/'
speech_f0 = '/home/user/app/human_data/f0/squeries/'
align_model_path ="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-icelandic-ep10-1000h"
tts_dir = '/home/user/app/tts_data/'
norm_sentence = snorm(sentence)
meta = get_recordings(norm_sentence, corpus_meta)
if meta:
align_human(meta,speech_aligns,speech_dir,align_model_path)
f0_human(meta, speech_f0, speech_dir)
human_rec_ids = sorted([l[2].split('.wav')[0] for l in meta])
if voices:
voices = [voices[0]] # TODO. now limit one voice at a time.
tts_sample, tts_speechmarks = get_tts(sentence,voices,tts_dir)
f0_tts(sentence, voices, tts_dir)
score, fig = cl.cluster(norm_sentence, sentence, human_rec_ids, speech_aligns, speech_f0, speech_dir, tts_dir, voices, start_end_word_ix)
# also stop forgetting duration.
return tts_sample, score, fig
def snorm(s):
s = ''.join([c.lower() for c in s if not unicodedata.category(c).startswith("P") ])
while ' ' in s:
s = s.replace(' ', ' ')
return s
# find all the recordings of a given sentence
# listed in the corpus metadata.
# sentence should be provided lowercase without punctuation
# TODO something not fatal to interface if <10
def get_recordings(sentence, corpusdb):
with open(corpusdb,'r') as handle:
meta = handle.read().splitlines()
meta = [l.split('\t') for l in meta[1:]]
# column index 4 of db is normalised sentence text
smeta = [l for l in meta if l[4] == sentence]
if len(smeta) < 10:
if len(smeta) < 1:
print('This sentence does not exist in the corpus')
else:
print('Under 10 copies of the sentence: skipping.')
return []
else:
print(f'{len(smeta)} recordings of sentence <{sentence}>')
return smeta
# check if word alignments exist for a set of human speech recordings
# if not, warn, and make them with ctcalign.
def align_human(meta,align_dir,speech_dir,model_path):
model_word_sep = '|'
model_blank_tk = '[PAD]'
no_align = []
for rec in meta:
apath = align_dir + rec[2].replace('.wav','.tsv')
if not os.path.exists(apath):
no_align.append(rec)
if no_align:
print(f'Need to run alignment for {len(no_align)} files')
if not os.path.exists(align_dir):
os.makedirs(align_dir)
caligner = aligner(model_path,model_word_sep,model_blank_tk)
for rec in no_align:
#wav_path = f'{speech_dir}{rec[1]}/{rec[2]}'
wav_path = f'{speech_dir}{rec[2]}'
word_aln = caligner(wav16m(wav_path),rec[4],is_normed=True)
apath = align_dir + rec[2].replace('.wav','.tsv')
word_aln = [[str(x) for x in l] for l in word_aln]
with open(apath,'w') as handle:
handle.write(''.join(['\t'.join(l)+'\n' for l in word_aln]))
else:
print('All alignments existed')
# check if f0s exist for all of those files.
# if not, warn, and make them with TODO reaper
def f0_human(meta, f0_dir, speech_dir, reaper_path = "REAPER/build/reaper"):
no_f0 = []
for rec in meta:
fpath = f0_dir + rec[2].replace('.wav','.f0')
if not os.path.exists(fpath):
no_f0.append(rec)
if no_f0:
print(f'Need to estimate pitch for {len(no_f0)} recordings')
if not os.path.exists(f0_dir):
os.makedirs(f0_dir)
for rec in no_f0:
wav_path = f'{speech_dir}{rec[2]}'
fpath = f0_dir + rec[2].replace('.wav','.f0')
f0_data = estimate_pitch(wav_path, reaper_path)
save_pitch(f0_data,fpath)
#print('2ND PASS PITCHES OF', fpath)
#print(f0_data)
else:
print('All speech pitch trackings existed')
# check if the TTS wavs + align jsons exist for this sentence
# if not, warn and make them with TAPI ******
def get_tts(sentence,voices,ttsdir):
# assume the first 64 chars of sentence are enough
dpath = sentence.replace(' ','_')[:65]
no_voice = []
temp_sample_path = ''
for v in voices:
wpath = f'{ttsdir}{dpath}/{v}.wav'
jpath = f'{ttsdir}{dpath}/{v}.json'
if not (os.path.exists(wpath) and os.path.exists(jpath)):
no_voice.append(v)
if not temp_sample_path:
temp_sample_path = wpath
temp_json_path = jpath
if no_voice:
print(f'Need to generate TTS for {len(no_voice)} voices')
if not os.path.exists(f'{ttsdir}{dpath}'):
os.makedirs(f'{ttsdir}{dpath}')
for v in voices:
wf, af = tiro(sentence,v,save=f'{ttsdir}{dpath}/')
else:
print('TTS for all voices existed')
return temp_sample_path, temp_json_path
# check if the TTS f0s exist
# if not warn + make
# TODO collapse functions
def f0_tts(sentence, voices, ttsdir, reaper_path = "REAPER/build/reaper"):
# assume the first 64 chars of sentence are enough
dpath = sentence.replace(' ','_')[:65]
no_f0 = []
for v in voices:
fpath = f'{ttsdir}{dpath}/{v}.f0'
if not os.path.exists(fpath):
no_f0.append(v)
ttt = subprocess.run(["ls", "-la", "ttsdir"], capture_output=True, text=True)
print('LS::', ttt.stdout)
if no_f0:
print(f'Need to estimate pitch for {len(no_f0)} voices')
for v in voices:
wav_path = f'{ttsdir}{dpath}/{v}.wav'
fpath = f'{ttsdir}{dpath}/{v}.f0'
print(wav_path)
print(fpath)
f0_data = estimate_pitch(wav_path, reaper_path)
save_pitch(f0_data,fpath)
else:
print('All TTS pitch trackings existed')
def localtest():
sentence = 'Ef svo er, hvað heita þau þá?'#'Var það ekki nóg?'
voices = ['Alfur'] #,'Dilja']
# make for now the interface allows max one voice
start_end_word_ix = '5-7'
locl = '/home/caitlinr/work/peval/pce/'
corpus_meta = locl+'human_data/SQL1adult10s_metadata.tsv'
speech_dir = locl+'human_data/audio/squeries/'
speech_aligns = locl+'human_data/align/squeries/'
speech_f0 = locl+'human_data/f0/squeries/'
align_model_path ="/home/caitlinr/work/models/LVL/wav2vec2-large-xlsr-53-icelandic-ep10-1000h"
tts_dir = locl+'tts_data/'
reaper_exc = '/home/caitlinr/work/notterra/REAPER/build/reaper'
norm_sentence = snorm(sentence)
meta = get_recordings(norm_sentence, corpus_meta)
#print(meta)
if meta:
align_human(meta,speech_aligns,speech_dir,align_model_path)
f0_human(meta, speech_f0, speech_dir, reaper_path = reaper_exc )
human_rec_ids = sorted([l[2].split('.wav')[0] for l in meta])
if voices:
voices = [voices[0]] # TODO. now limit one voice at a time.
audio_sample, speechmarks = get_tts(sentence,voices,tts_dir)
f0_tts(sentence, voices, tts_dir, reaper_path = reaper_exc)
score, fig = cl.cluster(norm_sentence, sentence, human_rec_ids, speech_aligns, speech_f0, speech_dir, tts_dir, voices, start_end_word_ix)
#localtest()
# torch matplotlib librosa sklearn_extra pydub
# env pclustr
# https://colab.research.google.com/drive/1RApnJEocx3-mqdQC2h5SH8vucDkSlQYt?authuser=1#scrollTo=410ecd91fa29bc73
# EVALUATION
# - of the tts
# - of the method: consistency? coherency / interpretability of 'best' voice across different features; alt. ability to recover good & problematic features from a combined method if that is chosen as the best?
# - how similar are the results across different sentences? are any voices consistently good or bad; if multiple are good, are they good in the same way or good in different ways; do humans agree.
# >> bc hey THAT could at least be an argument for the method, u might have to take time for human judgement once but then you can keep re using it free for new voices. or to select among alternative generations given you might know a context and know what you're going for in that context. etc.
|