File size: 17,985 Bytes
779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 53792d8 779c244 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import soundfile as sf
from collections import defaultdict
from dtw import dtw
from sklearn_extra.cluster import KMedoids
from copy import deepcopy
import os, librosa, json
# based on original implementation by
# https://colab.research.google.com/drive/1RApnJEocx3-mqdQC2h5SH8vucDkSlQYt?authuser=1#scrollTo=410ecd91fa29bc73
# by magnús freyr morthens 2023 supported by rannís nsn
def z_score(x, mean, std):
return (x - mean) / std
# output
# {'013823-0457777': [('hvaða', 0.89, 1.35),
# ('sjúkdómar', 1.35, 2.17),
# ('geta', 2.17, 2.4),
# ('fylgt', 2.4, 2.83),
# ('óbeinum', 2.83, 3.29),
# ('reykingum', 3.29, 3.9)],
# '014226-0508808': [('hvaða', 1.03, 1.45),
# ('sjúkdómar', 1.45, 2.28),
# ('geta', 2.41, 2.7),
# ('fylgt', 2.7, 3.09),
# ('óbeinum', 3.09, 3.74),
# ('reykingum', 3.74, 4.42)],
# '013726-0843679': [('hvaða', 0.87, 1.14),
# ('sjúkdómar', 1.14, 1.75),
# ('geta', 1.75, 1.96),
# ('fylgt', 1.96, 2.27),
# ('óbeinum', 2.27, 2.73),
# ('reykingum', 2.73, 3.27)] }
# takes a list of human SPEAKER IDS not the whole meta db
def get_word_aligns(rec_ids, norm_sent, aln_dir):
"""
Returns a dictionary of word alignments for a given sentence.
"""
word_aligns = defaultdict(list)
for rec in rec_ids:
slist = norm_sent.split(" ")
aln_path = os.path.join(aln_dir, f'{rec}.tsv')
with open(aln_path) as f:
lines = f.read().splitlines()
lines = [l.split('\t') for l in lines]
try:
assert len(lines) == len(slist)
word_aligns[rec] = [(w,float(s),float(e)) for w,s,e in lines]
except:
print(slist, lines, "<---- something didn't match")
return word_aligns
def get_pitches(start_time, end_time, id, path):
"""
Returns an array of pitch values for a given speech.
Reads from .f0 file of Time, F0, IsVoiced
"""
f = os.path.join(path, id + ".f0")
with open(f) as f:
lines = f.read().splitlines()
lines = [[float(x) for x in line.split()] for line in lines] # split lines into floats
pitches = []
# find the mean of all pitches in the whole sentence
mean = np.mean([line[1] for line in lines if line[2] != -1])
# find the std of all pitches in the whole sentence
std = np.std([line[1] for line in lines if line[2] != -1])
for line in lines:
time, pitch, is_pitch = line
if start_time <= time <= end_time:
if is_pitch:
pitches.append(z_score(pitch, mean, std))
else:
#pitches.append(z_score(fifth_percentile, mean, std))
pitches.append(-0.99)
return pitches
# jcheng used energy from esps get_f0
# get f0 says (?) :
#The RMS value of each record is computed based on a 30 msec hanning
#window with its left edge placed 5 msec before the beginning of the
#frame.
# jcheng z-scored the energys, per file.
# TODO: implement that. ?
# not sure librosa provides hamming window in rms function directly
# TODO handle audio that not originally .wav
def get_rmse(start_time, end_time, id, path):
"""
Returns an array of RMSE values for a given speech.
"""
f = os.path.join(path, id + ".wav")
audio, sr = librosa.load(f, sr=16000)
segment = audio[int(np.floor(start_time * sr)):int(np.ceil(end_time * sr))]
rmse = librosa.feature.rms(y=segment)
rmse = rmse[0]
#idx = np.round(np.linspace(0, len(rmse) - 1, pitch_len)).astype(int)
return rmse#[idx]
def downsample_rmse2pitch(rmse,pitch_len):
idx = np.round(np.linspace(0, len(rmse) - 1, pitch_len)).astype(int)
return rmse[idx]
# parse user input string to usable word indices for the sentence
# TODO handle cases
def parse_word_indices(start_end_word_index):
ixs = start_end_word_index.split('-')
if len(ixs) == 1:
s = int(ixs[0])
e = int(ixs[0])
else:
s = int(ixs[0])
e = int(ixs[-1])
return s-1,e-1
# take any (1stword, lastword) or (word)
# unit and prepare data for that unit
def get_data(norm_sent,h_spk_ids, h_align_dir, h_f0_dir, h_wav_dir, start_end_word_index):
"""
Returns a dictionary of pitch, rmse, and spectral centroids values for a given sentence/word combinations.
"""
s_ix, e_ix = parse_word_indices(start_end_word_index)
words = '_'.join(norm_sent.split(' ')[s_ix:e_ix+1])
word_aligns = get_word_aligns(h_spk_ids,norm_sent,h_align_dir)
data = defaultdict(list)
align_data = defaultdict(list)
for id, word_al in word_aligns.items():
start_time = word_al[s_ix][1]
end_time = word_al[e_ix][2]
seg_aligns = word_al[s_ix:e_ix+1]
seg_aligns = [(w,round(s-start_time,2),round(e-start_time,2)) for w,s,e in seg_aligns]
pitches = get_pitches(start_time, end_time, id, h_f0_dir)
rmses = get_rmse(start_time, end_time, id, h_wav_dir)
rmses = downsample_rmse2pitch(rmses,len(pitches))
#spectral_centroids = get_spectral_centroids(start_time, end_time, id, wav_dir, len(pitches))
pitches_cpy = np.array(deepcopy(pitches))
rmses_cpy = np.array(deepcopy(rmses))
d = [[p, r] for p, r in zip(pitches_cpy, rmses_cpy)]
#words = "-".join(word_combs)
data[f"{words}**{id}"] = d
align_data[f"{words}**{id}"] = seg_aligns
return words, data, align_data
def dtw_distance(x, y):
"""
Returns the DTW distance between two pitch sequences.
"""
alignment = dtw(x, y, keep_internals=True)
return alignment.normalizedDistance
# recs is a sorted list of rec IDs
# all recs/data contain the same words
# rec1 and rec2 can be the same
def pair_dists(data,words,recs):
dtw_dists = []
for rec1 in recs:
key1 = f'{words}**{rec1}'
val1 = data[key1]
for rec2 in recs:
key2 = f'{words}**{rec2}'
val2 = data[key2]
dtw_dists.append((f"{rec1}**{rec2}", dtw_distance(val1, val2)))
#for key1, value1 in data.items():
# d1 = key1.split("**")
# words1 = d1[0]
# if not words:
# words = words1
# spk1 = d1[1]
# for key2, value2 in data.items():
# d2 = key2.split("**")
# words2 = d2[0]
# spk2 = d2[1]
# if all([w0 == w2 for w0, w2 in zip(words.split('_'), words2.split('_'))]):
#dtw_dists[words1].append((f"{spk1}**{spk2}", dtw_distance(value1, value2)))
# dtw_dists.append((f"{spk1}**{spk2}", dtw_distance(value1, value2)))
return dtw_dists
# dtw dists is the dict from units to list of tuples
# or: now just the list not labelled with the unit.
# {'hvaða-sjúkdómar':
# [('013823-0457777_013823-0457777', 0.0),
# ('013823-0457777_013698-0441666', 0.5999433281203399),
# ('013823-0457777_014675-0563760', 0.4695447105594414),
# ('014226-0508808_013823-0457777', 0.44080874425223393),
# ('014226-0508808_014226-0508808', 0.0),
# ('014226-0508808_013726-0843679', 0.5599404672667414),
# ('014226-0508808_013681-0442313', 0.6871330752342419)]
# }
# the 0-distance self-comparisons are present here
# along with both copies of symmetric Speaker1**Speaker2, Speaker2**Speaker1
# TODO
# make n_clusters a param with default 3
def kmedoids_clustering(X):
kmedoids = KMedoids(n_clusters=3, random_state=0).fit(X)
y_km = kmedoids.labels_
return y_km, kmedoids
def get_tts_data(tdir,voice,start_end_word_index):
with open(f'{tdir}{voice}.json') as f:
speechmarks = json.load(f)
speechmarks = speechmarks['alignments']
sr=16000
tts_audio, _ = librosa.load(f'{tdir}{voice}.wav',sr=sr)
# TODO
# tts operates on punctuated version
# so clean this up instead of assuming it will work
s_ix, e_ix = parse_word_indices(start_end_word_index)
# TODO
# default speechmarks return word start time only -
# this cannot describe pauses #######
s_tts = speechmarks[s_ix]["time"]/1000
if e_ix+1 < len(speechmarks): #if user doesn't want final word, which has no end time mark,
e_tts = speechmarks[e_ix+1]["time"]/1000
tts_segment = tts_audio[int(np.floor(s_tts * sr)):int(np.ceil(e_tts * sr))]
else:
tts_segment = tts_audio[int(np.floor(s_tts * sr)):]
e_tts = len(tts_audio) / sr
# TODO not ideal as probably silence padding on end file?
tts_align = [(speechmarks[ix]["value"],speechmarks[ix]["time"]) for ix in range(s_ix,e_ix+1)]
tts_align = [(w,s/1000) for w,s in tts_align]
tts_align = [(w,round(s-s_tts,3)) for w,s in tts_align]
tts_f0 = get_pitches(s_tts, e_tts, voice, tdir)
tts_rmse = get_rmse(s_tts, e_tts, voice, tdir)
tts_rmse = downsample_rmse2pitch(tts_rmse,len(tts_f0))
t_pitches_cpy = np.array(deepcopy(tts_f0))
t_rmses_cpy = np.array(deepcopy(tts_rmse))
tts_data = [[p, r] for p, r in zip(t_pitches_cpy, t_rmses_cpy)]
return tts_data, tts_align
def match_tts(clusters, speech_data, tts_data, tts_align, words, seg_aligns, voice):
tts_info = []
for label in set([c for r,c in clusters]):
recs = [r for r,c in clusters if c==label]
dists = []
for rec in recs:
key = f'{words}**{rec}'
dists.append(dtw_distance(tts_data, speech_data[key]))
tts_info.append((label,np.nanmean(dists)))
tts_info = sorted(tts_info,key = lambda x: x[1])
best_cluster = tts_info[0][0]
best_cluster_score = tts_info[0][1]
matched_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==best_cluster}
# now do graphs of matched_data with tts_data
# and report best_cluster_score
fig = plot_pitch_tts(speech_data,tts_data, tts_align, words,seg_aligns,best_cluster,voice)
return best_cluster_score, fig
# since clustering strictly operates on X,
# once reduce a duration metric down to pair-distances,
# it no longer matters that duration and pitch/energy had different dimensionality
# TODO option to dtw on 3 feats pitch/ener/dur separately
# check if possible cluster with 3dim distance mat?
# or can it not take that input in multidimensional space
# then the 3 dists can still be averaged to flatten, if appropriately scaled
def cluster(norm_sent,orig_sent,h_spk_ids, h_align_dir, h_f0_dir, h_wav_dir, tts_dir, voices, start_end_word_index):
h_spk_ids = sorted(h_spk_ids)
nsents = len(h_spk_ids)
words, data, seg_aligns = get_data(norm_sent,h_spk_ids, h_align_dir, h_f0_dir, h_wav_dir, start_end_word_index)
dtw_dists = pair_dists(data,words,h_spk_ids)
kmedoids_cluster_dists = []
X = [d[1] for d in dtw_dists]
X = [X[i:i+nsents] for i in range(0, len(X), nsents)]
X = np.array(X)
y_km, kmedoids = kmedoids_clustering(X)
#plot_clusters(X, y_km, words)
#c1, c2, c3 = [X[np.where(kmedoids.labels_ == i)] for i in range(3)]
result = zip(X, kmedoids.labels_)
groups = [[r,c] for r,c in zip(h_spk_ids,kmedoids.labels_)]
# tts: assume the first 64 chars of sentence are enough
tdir = f'{tts_dir}{orig_sent.replace(" ","_")[:65]}/'
for v in voices:
tts_data, tts_align = get_tts_data(tdir,v,start_end_word_index)
# match the data with a cluster -----
best_cluster_score, fig = match_tts(groups, data, tts_data, tts_align, words, seg_aligns,v)
# only supports one voice at a time currently
return best_cluster_score, fig
#return words, kmedoids_cluster_dists, groups
# TODO there IS sth for making tts_data
# but im probably p much on my own rlly for that.
# TODO this one is v v helpful.
# but mind if i adjusted a dictionaries earlier.
def spks_all_cdist():
speaker_to_tts_dtw_dists = defaultdict(list)
for key1, value1 in data.items():
d = key1.split("-")
words1 = d[:-2]
id1, id2 = d[-2], d[-1]
for key2, value2 in tts_data.items():
d = key2.split("-")
words2 = d[:-2]
id3, id4 = d[-2], d[-1]
if all([w1 == w2 for w1, w2 in zip(words1, words2)]):
speaker_to_tts_dtw_dists[f"{'-'.join(words1)}"].append((f"{id1}-{id2}_{id3}-{id4}", dtw_distance(value1, value2)))
return speaker_to_tts_dtw_dists
#TODO i think this is also gr8
# but like figure out how its doing
# bc dict format and stuff,
# working keying by word index instead of word text, ***********
# and for 1 wd or 3+ wd units...
def tts_cdist():
tts_dist_to_cluster = defaultdict(list)
for words1, datas1 in kmedoids_cluster_dists.items():
for d1 in datas1:
cluster, sp_id1, arr = d1
for words2, datas2 in speaker_to_tts_dtw_dists.items():
for d2 in datas2:
ids, dist = d2
sp_id2, tts_alfur = ids.split("_")
if sp_id1 == sp_id2 and words1 == words2:
tts_dist_to_cluster[f"{words1}-{cluster}"].append(dist)
tts_mean_dist_to_cluster = {
key: np.mean(value) for key, value in tts_dist_to_cluster.items()
}
return tts_mean_dist_to_cluster
# TODO check if anything uses this?
def get_audio_part(start_time, end_time, id, path):
"""
Returns a dictionary of RMSE values for a given sentence.
"""
f = os.path.join(path, id + ".wav")
audio, sr = librosa.load(f, sr=16000)
segment = audio[int(np.floor(start_time * sr)):int(np.ceil(end_time * sr))]
return segment
def plot_pitch_tts(speech_data,tts_data, tts_align,words,seg_aligns,cluster_id, voice):
colors = ["red", "green", "blue", "orange", "purple", "pink", "brown", "gray", "cyan"]
i = 0
fig = plt.figure(figsize=(6, 5))
plt.title(f"{words} - Pitch - Cluster {cluster_id}")
for k,v in speech_data.items():
spk = k.split('**')[1]
word_times = seg_aligns[k]
pitches = [p for p,e in v]
# datapoint interval is 0.005 seconds
pitch_xvals = [x*0.005 for x in range(len(pitches))]
# centre around the first word boundary -
# if 3+ words, too bad.
if len(word_times)>1:
realign = np.mean([word_times[0][2],word_times[1][1]])
pitch_xvals = [x - realign for x in pitch_xvals]
word_times = [(w,s-realign,e-realign) for w,s,e in word_times]
plt.axvline(x= 0, color="gray", linestyle='--', linewidth=1, label=f"{word_times[0][0]} -> {word_times[1][0]} boundary")
if len(word_times)>2:
for i in range(1,len(word_times)-1):
bound_line = np.mean([word_times[i][2],word_times[i+1][1]])
plt.axvline(x=bound_line, color=colors[i], linestyle='--', linewidth=1, label=f"Speaker {spk} -> {word_times[i+1][0]}")
plt.scatter(pitch_xvals, pitches, color=colors[i], label=f"Speaker {spk}")
i += 1
tpitches = [p for p,e in tts_data]
t_xvals = [x*0.005 for x in range(len(tpitches))]
if len(tts_align)>1:
realign = tts_align[1][1]
t_xvals = [x - realign for x in t_xvals]
tts_align = [(w,s-realign) for w,s in tts_align]
if len(tts_align)>2:
for i in range(2,len(tts_align)):
bound_line = tts_align[i][1]
plt.axvline(x=bound_line, color="black", linestyle='--', linewidth=1, label=f"TTS -> {tts_align[i][0]}")
plt.scatter(t_xvals, tpitches, color="black", label=f"TTS {voice}")
plt.legend()
#plt.show()
return fig
# want to:
# - find tts best cluster
# - find avg dist for tts in that cluster
# - find avg dist for any human to the rest of its cluster
# see near end of notebook for v nice way to grab timespans of tts audio
# (or just the start/end timestamps to mark them) from alignment json
# based on word position index -
# so probably really do show user the sentence with each word numbered.
# THEN there is -
# \# Plot pitch, rmse, and spectral centroid for each word combination for each speaker
# - this is one persontoken per graph and has a word division line - idk if works >2 wds.
# it might be good to do this for tts at least, eh
# Plot pitch values for each word combination for each speaker in each cluster (with word boundaries)
# - multi speakers (one cluster) per graph - this will be good to show, with tts on top.
# i may want to recentre it around wd bound. at least if only 2 wds.
# well i could just pick, like, it will be centred around the 1st wboundary & good luck if more.
# - the same as above, but rmse
# go all the way to the bottom to see gphs with a tts added on to one cluster.
# will need:
# the whole sentence text (index, word) pairs
# the indices of units the user wants
# human meta db of all human recordings
# tts dir, human wav + align + f0 dirs
# list of tts voices
# an actual wav file for each human rec, probably
# params like: use f0, use rmse, (use dur), [.....]
# .. check.
def plot_clusters(X, y, word):
u_labels = np.unique(y)
# plot the results
for i in u_labels:
plt.scatter(X[y == i, 0], X[y == i, 1], label=i)
plt.title(word)
plt.legend()
plt.show()
|