File size: 7,393 Bytes
1e483fc
 
 
 
 
 
 
ecd5f69
 
 
1e483fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecd5f69
1e483fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecd5f69
1e483fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecd5f69
 
 
1e483fc
 
 
 
 
 
ecd5f69
1e483fc
 
 
 
 
 
ecd5f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e483fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecd5f69
1e483fc
 
 
 
 
 
 
 
 
 
ecd5f69
 
1e483fc
 
 
 
ecd5f69
 
 
 
1e483fc
 
 
 
 
 
 
 
 
ecd5f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e483fc
ecd5f69
1e483fc
ecd5f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e483fc
 
ecd5f69
1e483fc
ecd5f69
 
1e483fc
 
 
ecd5f69
1e483fc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os, json
import numpy as np
from collections import defaultdict
import pandas as pd
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde
#from scipy.spatial import KDTree
#from sklearn.neighbors import NearestNeighbors

# make subsets of words for convenience
def make_sets(db,shorts,longs):
	
	def _wspec(wd,l1,l2):
		if (wd in l1) and (wd in l2):
			return(wd,wd)
		elif wd in l1:
			return(f'{wd} [L1]',wd)
		elif wd in l2:
			return(f'{wd} [L2]',wd)
		else:
			return ('','')

	def _ksrt(k):
		if ' ' in k:
			return((k[0],1/len(k)))
		else:
			return (k.replace(':',''),k[-1] )
		
	words = set([(t['word'],t['speaker_lang']) for t in db])
	l1 = [w for w,l in words if l == 'L1']
	l2 = [w for w,l in words if l == 'L2']
	words = set([w for w,l in words])

	wdict = defaultdict(list)
	for w in words:
		if 'agg' in w:
			wdict['AG:'].append(_wspec(w,l1,l2))
		elif 'all' in w:
			wdict['AL:'].append(_wspec(w,l1,l2))
		elif 'egg' in w:
			wdict['EG:'].append(_wspec(w,l1,l2))
		elif 'eki' in w:
			wdict['E:G'].append(_wspec(w,l1,l2))
		elif 'aki' in w:
			wdict['A:G'].append(_wspec(w,l1,l2))
		elif 'ala' in w:
			wdict['A:L'].append(_wspec(w,l1,l2))
		elif w in shorts:
			wdict['OTHER - SHORT'].append(_wspec(w,l1,l2))
		elif w in longs:
			wdict['OTHER - LONG'].append(_wspec(w,l1,l2))
		else:
			print(f'something should not have happened: {w}')

			
	sets = [(k, sorted(wdict[k])) for k in sorted(list(wdict.keys()),key = _ksrt)]
	
	return sets
			

# compile data for a token record
def get_tk_data(tk,shorts,longs):

	# merge intervals
	# from list of phones
	# to word part
	def _merge_intervals(plist):
		if not plist:
			return np.nan
		tot_start, tot_end = plist[0]['start'],plist[-1]['end']
		tot_dur = tot_end-tot_start
		return tot_dur
	
	tkdat = {}
	tkdat['word'] = tk['word']
	tkdat['speaker_lang'] = tk['speaker_lang']
	tkdat['n_pre_phone'] = len(tk['gold_annotation']['prevowel'])
	tkdat['n_post_phone'] = len(tk['gold_annotation']['postvowel'])
	
	if tk['word'] in longs:
		tkdat['vlen'] = 1
	else:
		assert tk['word'] in shorts
		tkdat['vlen'] = 0
		
	for s in ['gold','mfa']:
		tkdat[f'{s}_pre_dur'] = _merge_intervals(tk[f'{s}_annotation']['prevowel'])
		tkdat[f'{s}_v_dur'] = _merge_intervals(tk[f'{s}_annotation']['vowel'])
		tkdat[f'{s}_post_dur'] = _merge_intervals(tk[f'{s}_annotation']['postvowel'])
		tkdat[f'{s}_word_dur'] = tk[f'{s}_annotation']['target_word_end'] -\
		  tk[f'{s}_annotation']['target_word_start']
	
	return tkdat


# code short vowels 0, long 1
def prep_dat(d):
	df = d.copy()
	for s in ['gold','mfa']:
		df[f'{s}_ratio'] = df[f'{s}_v_dur'] / (df[f'{s}_v_dur']+df[f'{s}_post_dur'])
		df[f'{s}_pre_dur'] = df[f'{s}_pre_dur'].fillna(0) # set absent onsets dur zero
	df = df.convert_dtypes()
	return df


def setup(annot_json):

	longs = set(['aki', 'ala', 'baki', 'bera', 'betri', 'blaki', 'breki',
				'brosir', 'dala', 'dreki', 'dvala', 'fala', 'fara', 'færa',
				'færi', 'gala', 'hausinn', 'jónas', 'katrín', 'kisa', 'koma',
				'leki', 'leyfa', 'maki', 'muna', 'nema', 'raki', 'sama',
				'speki', 'svala', 'sækja', 'sömu', 'taki', 'tala', 'tvisvar',
				'vala', 'veki', 'vinur', 'ása', 'þaki'])
	
	shorts = set(['aggi', 'baggi', 'balla', 'beggi', 'eggi', 'farðu', 'fossinn',
				'færði', 'galla', 'hausnum', 'herra', 'jónsson', 'kaggi', 'kalla',
				'lalla', 'leggi', 'leyfðu', 'maggi', 'malla', 'mamma', 'missa',
				'mömmu', 'nærri', 'palla', 'raggi', 'skeggi', 'snemma', 'sunna',
				'tommi', 'veggi','vinnur', 'ásta'])

	# very basic remove about 5 outliers > 350ms
	cut=0.35

	with open(annot_json, 'r') as handle:
		db = json.load(handle)

	sets = make_sets(db,shorts,longs)

	db = [get_tk_data(tk,shorts,longs) for tk in db]
	db = [t for t in db if ((t['gold_v_dur'] <=cut) and (t['gold_post_dur'] <=cut))]
	dat = pd.DataFrame.from_records(db)
	dat = prep_dat(dat)

	return sets,dat


def kldiv(s1,s2):
	_log = lambda x: np.log2(x) if x != 0 else 0
	_log = np.vectorize(_log)
	
	n, m = len(s1), len(s2)
	d = s1.shape[1]
	assert d == 2 == s2.shape[1]

	k = 1
	while True:
		knn1 = NearestNeighbors(n_neighbors = k+1).fit(s1)
		nnDist1 = knn1.kneighbors(s1)[0][:, k]
		if not nnDist1.all():
			k += 1
		else:
			break
	knn2 = NearestNeighbors(n_neighbors = k).fit(s2)
	nnDist2 = knn2.kneighbors(s1)[0][:, k-1]
	kl = (d/n) * sum(_log(nnDist2/nnDist1)) + _log((m/(n-1)))
	return kl

		

def vgraph(dat1,l1,src1,lab1,dat2,l2,src2,lab2):

	def _gprep(df,l,s):

		# color by length + speaker group
		ccs = { "lAll" : (0.0, 0.749, 1.0),
				"lL1" : (0.122, 0.467, 0.706),
				"lL2" : (0.282, 0.82, 0.8),
				"sAll" :(0.89, 0.467, 0.761),
				"sL1" : (0.863, 0.078, 0.235),
				"sL2" : (0.859, 0.439, 0.576),
				"xAll" : (0.988, 0.69, 0.004),
				"xL1" : (0.984, 0.49, 0.027),
				"xL2" : (0.969, 0.835, 0.376)}

		vdurs = np.array(df[f'{s}_v_dur'])*1000
		cdurs = np.array(df[f'{s}_post_dur'])*1000
		rto = np.mean(df[f'{s}_ratio'])

		if sum(df['vlen']) == 0:
			vl = 's'
		elif sum(df['vlen']) == df.shape[0]:
			vl = 'l'
		else:
			vl = 'x'

		cc = ccs[f'{vl}{l}']

		return vdurs, cdurs, rto, cc

	plt.close()
	
	vd1,cd1,ra1,cl1 = _gprep(dat1,l1,src1)
	lab1 += f'\n Ratio: {ra1:.3f}'
	if src1 == 'gold':
		mk1 = '^'
	else:
		mk1 = '<'


	fig, ax = plt.subplots(figsize=(9,7))
	#ax.set_xlim(0.0, 350)
	#ax.set_ylim(0.0, 350)

	ax.scatter(vd1,cd1,marker = mk1, label = lab1,
				   c = [cl1 + (.7,)], edgecolors = [cl1] )

	marginals = [(vd1, 'x', l1, cl1),
				(cd1, 'y', l1, cl1)]
	
	#kld = None
	if lab2:
		vd2,cd2,ra2,cl2 = _gprep(dat2,l2,src2)
		lab2 += f'\n Ratio: {ra2:.3f}'
		if src2 == 'gold':
			mk2 = 'v'
		else:
			mk2 = '>'
		ax.scatter(vd2,cd2, marker = mk2, label = lab2,
					c = [cl2 + (.05,)], edgecolors = [cl2] )
		#s1 = np.transpose(np.array([vd1,cd1]))
		#s2 = np.transpose(np.array([vd2,cd2]))
		#klda = kldiv(s1,s2)
		#if klda:
		#	kldb = kldiv(s2,s1)
		#	kldsym = np.mean([klda,kldb])
		#	if not np.isnan(kldsym):
		#		ax.scatter([-300],[-300],c = 'white',label = f'\nKLDiv: {kldsym:.2f}')
			
		marginals += [(vd2, 'x', l2, cl2),
					(cd2, 'y', l2, cl2)]

	#fig.legend(loc=8,ncols=2)
	leg = fig.legend(loc=7,frameon=False)
	for t in leg.get_texts():
		t.set_verticalalignment("center_baseline")

	ax.axline((0,0),slope=1,color="darkgray")

	marginals = [m for m in marginals if len(m[0])>9]
	lsts = {'L1': 'solid' , 'L2': 'dashed' , 'All': 'dashdot'}
	for values, axt, lng, lcl in marginals:
		kde = gaussian_kde(values, bw_method='scott')
		pts = np.linspace(np.min(values), np.max(values))
		dens = kde.pdf(pts)
		scf=2500
		lst = lsts[lng]
		#l2dat = ax.plot(pts, [350-(scf*i) for i in dens], linestyle=lst, color = lcl)
		l2dat = ax.plot(pts, [350+(scf*i) for i in dens], linestyle=lst, color = lcl, clip_on=False)
		if axt == 'y':
			for l2d in l2dat:
				xln = l2d.get_xdata()
				yln = l2d.get_ydata()
				l2d.set_xdata(yln)
				l2d.set_ydata(xln)
				fig.canvas.draw()
				#ax.draw_artist(l2d)

				
	ax.set_xlim(0.0, 350)
	ax.set_ylim(0.0, 350)

	ax.set_title("Stressed vowel & following consonant(s) duration" , fontsize=16, y=-.155)
	ax.set_xlabel("Vowel duration (ms)")
	ax.set_ylabel("Consonant duration (ms)")

	fig.tight_layout()
	fig.subplots_adjust(bottom=0.13)
	fig.subplots_adjust(right=0.72)

	#plt.xticks(ticks=[50,100,150,200,250,300],labels=[])
	#plt.yticks(ticks=[100,200,300],labels=[])
	
	return fig