Spaces:
Sleeping
Sleeping
File size: 7,393 Bytes
1e483fc ecd5f69 1e483fc ecd5f69 1e483fc ecd5f69 1e483fc ecd5f69 1e483fc ecd5f69 1e483fc ecd5f69 1e483fc ecd5f69 1e483fc ecd5f69 1e483fc ecd5f69 1e483fc ecd5f69 1e483fc ecd5f69 1e483fc ecd5f69 1e483fc ecd5f69 1e483fc ecd5f69 1e483fc ecd5f69 1e483fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import os, json
import numpy as np
from collections import defaultdict
import pandas as pd
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde
#from scipy.spatial import KDTree
#from sklearn.neighbors import NearestNeighbors
# make subsets of words for convenience
def make_sets(db,shorts,longs):
def _wspec(wd,l1,l2):
if (wd in l1) and (wd in l2):
return(wd,wd)
elif wd in l1:
return(f'{wd} [L1]',wd)
elif wd in l2:
return(f'{wd} [L2]',wd)
else:
return ('','')
def _ksrt(k):
if ' ' in k:
return((k[0],1/len(k)))
else:
return (k.replace(':',''),k[-1] )
words = set([(t['word'],t['speaker_lang']) for t in db])
l1 = [w for w,l in words if l == 'L1']
l2 = [w for w,l in words if l == 'L2']
words = set([w for w,l in words])
wdict = defaultdict(list)
for w in words:
if 'agg' in w:
wdict['AG:'].append(_wspec(w,l1,l2))
elif 'all' in w:
wdict['AL:'].append(_wspec(w,l1,l2))
elif 'egg' in w:
wdict['EG:'].append(_wspec(w,l1,l2))
elif 'eki' in w:
wdict['E:G'].append(_wspec(w,l1,l2))
elif 'aki' in w:
wdict['A:G'].append(_wspec(w,l1,l2))
elif 'ala' in w:
wdict['A:L'].append(_wspec(w,l1,l2))
elif w in shorts:
wdict['OTHER - SHORT'].append(_wspec(w,l1,l2))
elif w in longs:
wdict['OTHER - LONG'].append(_wspec(w,l1,l2))
else:
print(f'something should not have happened: {w}')
sets = [(k, sorted(wdict[k])) for k in sorted(list(wdict.keys()),key = _ksrt)]
return sets
# compile data for a token record
def get_tk_data(tk,shorts,longs):
# merge intervals
# from list of phones
# to word part
def _merge_intervals(plist):
if not plist:
return np.nan
tot_start, tot_end = plist[0]['start'],plist[-1]['end']
tot_dur = tot_end-tot_start
return tot_dur
tkdat = {}
tkdat['word'] = tk['word']
tkdat['speaker_lang'] = tk['speaker_lang']
tkdat['n_pre_phone'] = len(tk['gold_annotation']['prevowel'])
tkdat['n_post_phone'] = len(tk['gold_annotation']['postvowel'])
if tk['word'] in longs:
tkdat['vlen'] = 1
else:
assert tk['word'] in shorts
tkdat['vlen'] = 0
for s in ['gold','mfa']:
tkdat[f'{s}_pre_dur'] = _merge_intervals(tk[f'{s}_annotation']['prevowel'])
tkdat[f'{s}_v_dur'] = _merge_intervals(tk[f'{s}_annotation']['vowel'])
tkdat[f'{s}_post_dur'] = _merge_intervals(tk[f'{s}_annotation']['postvowel'])
tkdat[f'{s}_word_dur'] = tk[f'{s}_annotation']['target_word_end'] -\
tk[f'{s}_annotation']['target_word_start']
return tkdat
# code short vowels 0, long 1
def prep_dat(d):
df = d.copy()
for s in ['gold','mfa']:
df[f'{s}_ratio'] = df[f'{s}_v_dur'] / (df[f'{s}_v_dur']+df[f'{s}_post_dur'])
df[f'{s}_pre_dur'] = df[f'{s}_pre_dur'].fillna(0) # set absent onsets dur zero
df = df.convert_dtypes()
return df
def setup(annot_json):
longs = set(['aki', 'ala', 'baki', 'bera', 'betri', 'blaki', 'breki',
'brosir', 'dala', 'dreki', 'dvala', 'fala', 'fara', 'færa',
'færi', 'gala', 'hausinn', 'jónas', 'katrín', 'kisa', 'koma',
'leki', 'leyfa', 'maki', 'muna', 'nema', 'raki', 'sama',
'speki', 'svala', 'sækja', 'sömu', 'taki', 'tala', 'tvisvar',
'vala', 'veki', 'vinur', 'ása', 'þaki'])
shorts = set(['aggi', 'baggi', 'balla', 'beggi', 'eggi', 'farðu', 'fossinn',
'færði', 'galla', 'hausnum', 'herra', 'jónsson', 'kaggi', 'kalla',
'lalla', 'leggi', 'leyfðu', 'maggi', 'malla', 'mamma', 'missa',
'mömmu', 'nærri', 'palla', 'raggi', 'skeggi', 'snemma', 'sunna',
'tommi', 'veggi','vinnur', 'ásta'])
# very basic remove about 5 outliers > 350ms
cut=0.35
with open(annot_json, 'r') as handle:
db = json.load(handle)
sets = make_sets(db,shorts,longs)
db = [get_tk_data(tk,shorts,longs) for tk in db]
db = [t for t in db if ((t['gold_v_dur'] <=cut) and (t['gold_post_dur'] <=cut))]
dat = pd.DataFrame.from_records(db)
dat = prep_dat(dat)
return sets,dat
def kldiv(s1,s2):
_log = lambda x: np.log2(x) if x != 0 else 0
_log = np.vectorize(_log)
n, m = len(s1), len(s2)
d = s1.shape[1]
assert d == 2 == s2.shape[1]
k = 1
while True:
knn1 = NearestNeighbors(n_neighbors = k+1).fit(s1)
nnDist1 = knn1.kneighbors(s1)[0][:, k]
if not nnDist1.all():
k += 1
else:
break
knn2 = NearestNeighbors(n_neighbors = k).fit(s2)
nnDist2 = knn2.kneighbors(s1)[0][:, k-1]
kl = (d/n) * sum(_log(nnDist2/nnDist1)) + _log((m/(n-1)))
return kl
def vgraph(dat1,l1,src1,lab1,dat2,l2,src2,lab2):
def _gprep(df,l,s):
# color by length + speaker group
ccs = { "lAll" : (0.0, 0.749, 1.0),
"lL1" : (0.122, 0.467, 0.706),
"lL2" : (0.282, 0.82, 0.8),
"sAll" :(0.89, 0.467, 0.761),
"sL1" : (0.863, 0.078, 0.235),
"sL2" : (0.859, 0.439, 0.576),
"xAll" : (0.988, 0.69, 0.004),
"xL1" : (0.984, 0.49, 0.027),
"xL2" : (0.969, 0.835, 0.376)}
vdurs = np.array(df[f'{s}_v_dur'])*1000
cdurs = np.array(df[f'{s}_post_dur'])*1000
rto = np.mean(df[f'{s}_ratio'])
if sum(df['vlen']) == 0:
vl = 's'
elif sum(df['vlen']) == df.shape[0]:
vl = 'l'
else:
vl = 'x'
cc = ccs[f'{vl}{l}']
return vdurs, cdurs, rto, cc
plt.close()
vd1,cd1,ra1,cl1 = _gprep(dat1,l1,src1)
lab1 += f'\n Ratio: {ra1:.3f}'
if src1 == 'gold':
mk1 = '^'
else:
mk1 = '<'
fig, ax = plt.subplots(figsize=(9,7))
#ax.set_xlim(0.0, 350)
#ax.set_ylim(0.0, 350)
ax.scatter(vd1,cd1,marker = mk1, label = lab1,
c = [cl1 + (.7,)], edgecolors = [cl1] )
marginals = [(vd1, 'x', l1, cl1),
(cd1, 'y', l1, cl1)]
#kld = None
if lab2:
vd2,cd2,ra2,cl2 = _gprep(dat2,l2,src2)
lab2 += f'\n Ratio: {ra2:.3f}'
if src2 == 'gold':
mk2 = 'v'
else:
mk2 = '>'
ax.scatter(vd2,cd2, marker = mk2, label = lab2,
c = [cl2 + (.05,)], edgecolors = [cl2] )
#s1 = np.transpose(np.array([vd1,cd1]))
#s2 = np.transpose(np.array([vd2,cd2]))
#klda = kldiv(s1,s2)
#if klda:
# kldb = kldiv(s2,s1)
# kldsym = np.mean([klda,kldb])
# if not np.isnan(kldsym):
# ax.scatter([-300],[-300],c = 'white',label = f'\nKLDiv: {kldsym:.2f}')
marginals += [(vd2, 'x', l2, cl2),
(cd2, 'y', l2, cl2)]
#fig.legend(loc=8,ncols=2)
leg = fig.legend(loc=7,frameon=False)
for t in leg.get_texts():
t.set_verticalalignment("center_baseline")
ax.axline((0,0),slope=1,color="darkgray")
marginals = [m for m in marginals if len(m[0])>9]
lsts = {'L1': 'solid' , 'L2': 'dashed' , 'All': 'dashdot'}
for values, axt, lng, lcl in marginals:
kde = gaussian_kde(values, bw_method='scott')
pts = np.linspace(np.min(values), np.max(values))
dens = kde.pdf(pts)
scf=2500
lst = lsts[lng]
#l2dat = ax.plot(pts, [350-(scf*i) for i in dens], linestyle=lst, color = lcl)
l2dat = ax.plot(pts, [350+(scf*i) for i in dens], linestyle=lst, color = lcl, clip_on=False)
if axt == 'y':
for l2d in l2dat:
xln = l2d.get_xdata()
yln = l2d.get_ydata()
l2d.set_xdata(yln)
l2d.set_ydata(xln)
fig.canvas.draw()
#ax.draw_artist(l2d)
ax.set_xlim(0.0, 350)
ax.set_ylim(0.0, 350)
ax.set_title("Stressed vowel & following consonant(s) duration" , fontsize=16, y=-.155)
ax.set_xlabel("Vowel duration (ms)")
ax.set_ylabel("Consonant duration (ms)")
fig.tight_layout()
fig.subplots_adjust(bottom=0.13)
fig.subplots_adjust(right=0.72)
#plt.xticks(ticks=[50,100,150,200,250,300],labels=[])
#plt.yticks(ticks=[100,200,300],labels=[])
return fig
|