Spaces:
Sleeping
Sleeping
File size: 5,369 Bytes
1e483fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import os, json
import numpy as np
from collections import defaultdict
import pandas as pd
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# make subsets of words for convenience
def make_sets(db,shorts,longs):
def _wspec(wd,l1,l2):
if (wd in l1) and (wd in l2):
return(wd,wd)
elif wd in l1:
return(f'{wd} [L1]',wd)
elif wd in l2:
return(f'{wd} [L2]',wd)
else:
return ('','')
def _ksrt(k):
if ' ' in k:
return((k[0],1/len(k)))
else:
return (k.replace(':',''),k[-1] )
words = set([(t['word'],t['speaker_lang']) for t in db])
l1 = [w for w,l in words if l == 'L1']
l2 = [w for w,l in words if l == 'L2']
words = set([w for w,l in words])
wdict = defaultdict(list)
for w in words:
if 'agg' in w:
wdict['AG:'].append(_wspec(w,l1,l2))
elif 'all' in w:
wdict['AL:'].append(_wspec(w,l1,l2))
elif 'egg' in w:
wdict['EG:'].append(_wspec(w,l1,l2))
elif 'eki' in w:
wdict['E:G'].append(_wspec(w,l1,l2))
elif 'aki' in w:
wdict['A:G'].append(_wspec(w,l1,l2))
elif 'ala' in w:
wdict['A:L'].append(_wspec(w,l1,l2))
elif w in shorts:
wdict['OTHER - SHORT'].append(_wspec(w,l1,l2))
elif w in longs:
wdict['OTHER - LONG'].append(_wspec(w,l1,l2))
else:
print(f'something should not have happened: {w}')
sets = [(k, sorted(wdict[k])) for k in sorted(list(wdict.keys()),key = _ksrt)]
return sets
# compile data for a token record
def get_tk_data(tk,shorts,longs):
# merge intervals
# from list of phones
# to word part
def _merge_intervals(plist):
if not plist:
return np.nan
tot_start, tot_end = plist[0]['start'],plist[-1]['end']
tot_dur = tot_end-tot_start
return tot_dur
tkdat = {}
tkdat['word'] = tk['word']
tkdat['speaker_lang'] = tk['speaker_lang']
tkdat['n_pre_phone'] = len(tk['gold_annotation']['prevowel'])
tkdat['n_post_phone'] = len(tk['gold_annotation']['postvowel'])
if tk['word'] in longs:
tkdat['vlen'] = 1
else:
assert tk['word'] in shorts
tkdat['vlen'] = 0
for s in ['gold','mfa']:
tkdat[f'{s}_pre_dur'] = _merge_intervals(tk[f'{s}_annotation']['prevowel'])
tkdat[f'{s}_v_dur'] = _merge_intervals(tk[f'{s}_annotation']['vowel'])
tkdat[f'{s}_post_dur'] = _merge_intervals(tk[f'{s}_annotation']['postvowel'])
tkdat[f'{s}_word_dur'] = tk[f'{s}_annotation']['target_word_end'] -\
tk[f'{s}_annotation']['target_word_start']
return tkdat
# code short vowels 0, long 1
def prep_dat(d):
df = d.copy()
for s in ['gold','mfa']:
df[f'{s}_ratio'] = df[f'{s}_v_dur'] / (df[f'{s}_v_dur']+df[f'{s}_post_dur'])
df[f'{s}_pre_dur'] = df[f'{s}_pre_dur'].fillna(0) # set absent onsets dur zero
df = df.convert_dtypes()
return df
def setup(annot_json):
longs = set(['aki', 'ala', 'baki', 'bera', 'betri', 'blaki', 'breki',
'brosir', 'dala', 'dreki', 'dvala', 'fala', 'fara', 'færa',
'færi', 'gala', 'hausinn', 'jónas', 'katrín', 'kisa', 'koma',
'leki', 'leyfa', 'maki', 'muna', 'nema', 'raki', 'sama',
'speki', 'svala', 'sækja', 'sömu', 'taki', 'tala', 'tvisvar',
'vala', 'veki', 'vinur', 'ása', 'þaki'])
shorts = set(['aggi', 'baggi', 'balla', 'beggi', 'eggi', 'farðu', 'fossinn',
'færði', 'galla', 'hausnum', 'herra', 'jónsson', 'kaggi', 'kalla',
'lalla', 'leggi', 'leyfðu', 'maggi', 'malla', 'mamma', 'missa',
'mömmu', 'nærri', 'palla', 'raggi', 'skeggi', 'snemma', 'sunna',
'tommi', 'veggi','vinnur', 'ásta'])
with open(annot_json, 'r') as handle:
db = json.load(handle)
sets = make_sets(db,shorts,longs)
db = [get_tk_data(tk,shorts,longs) for tk in db]
dat = pd.DataFrame.from_records(db)
dat = prep_dat(dat)
return sets,dat
def vgraph(dat1,l1,src1,lab1,dat2,l2,src2,lab2):
def _gprep(df,l,s):
# color by length + speaker group
ccs = { "lAll" : (0.0, 0.749, 1.0),
"lL1" : (0.122, 0.467, 0.706),
"lL2" : (0.282, 0.82, 0.8),
"sAll" :(0.89, 0.467, 0.761),
"sL1" : (0.863, 0.078, 0.235),
"sL2" : (0.859, 0.439, 0.576),
"xAll" : (0.988, 0.69, 0.004),
"xL1" : (0.984, 0.49, 0.027),
"xL2" : (0.969, 0.835, 0.376)}
vdurs = np.array(df[f'{s}_v_dur'])*1000
cdurs = np.array(df[f'{s}_post_dur'])*1000
rto = np.mean(df[f'{s}_ratio'])
if sum(df['vlen']) == 0:
vl = 's'
elif sum(df['vlen']) == df.shape[0]:
vl = 'l'
else:
vl = 'x'
cc = ccs[f'{vl}{l}']
return vdurs, cdurs, rto, cc
vd1,cd1,ra1,cl1 = _gprep(dat1,l1,src1)
lab1 += f'\n Ratio: {ra1:.3f}'
if src1 == 'gold':
mk1 = '^'
else:
mk1 = '<'
fig, ax = plt.subplots(figsize=(9,7))
ax.set_xlim(0.0,350)
ax.set_ylim(0.0,350)
ax.scatter(vd1,cd1,marker = mk1, label = lab1,
c = [cl1 + (.7,)], edgecolors = [cl1] )
if lab2:
vd2,cd2,ra2,cl2 = _gprep(dat2,l2,src2)
lab2 += f'\n Ratio: {ra2:.3f}'
if src2 == 'gold':
mk2 = 'v'
else:
mk2 = '>'
ax.scatter(vd2,cd2, marker = mk2, label = lab2,
c = [cl2 + (.05,)], edgecolors = [cl2] )
ax.set_title("Stressed vowel & following consonant(s) duration" )
ax.set_xlabel("Vowel duration (ms)")
ax.set_ylabel("Consonant duration (ms)")
#fig.legend(loc=8,ncols=2)
fig.legend(loc=7)
ax.axline((0,0),slope=1,color="darkgray")
fig.tight_layout()
#fig.subplots_adjust(bottom=0.15)
fig.subplots_adjust(right=0.75)
#plt.xticks(ticks=[50,100,150,200,250,300],labels=[])
#plt.yticks(ticks=[100,200,300],labels=[])
return fig
|