Spaces:
Runtime error
Runtime error
File size: 7,086 Bytes
a19c1c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import json
import os
import sys
import pandas as pd
import streamlit as st
current = os.path.dirname(os.path.realpath(__file__))
parent = os.path.dirname(current)
sys.path.append(parent)
from helpers import (
apply_style,
find_event_types,
get_additional_words,
get_nli_limit,
get_num_sentences_in_list_text,
get_top_k,
run_prent,
)
### Styling
apply_style()
TOP_K = get_top_k()
NLI_LIMIT = get_nli_limit()
### Initialize session state variables
if "codebook" not in st.session_state:
st.session_state.codebook = {}
st.session_state.codebook.setdefault("events", {})
if "text" not in st.session_state:
st.session_state.text = ""
if "res" not in st.session_state:
st.session_state.res = None
if "accept_reject_text_perm" not in st.session_state:
st.session_state.accept_reject_text_perm = None
if "validated_data" not in st.session_state:
st.session_state["validated_data"] = {}
if "time_comput" not in st.session_state:
st.session_state.time_comput = 20
if "rerun" not in st.session_state:
st.session_state.rerun = False
if "label_res" not in st.session_state:
st.session_state.label_res = {}
if "filtered_df" not in st.session_state:
st.session_state["filtered_df"] = pd.DataFrame()
if len(st.session_state["filtered_df"]) == 0:
st.warning("No data loaded.")
def reset_computation_results():
st.session_state.res = {}
st.session_state.recompute_all_templates = True
st.session_state["accept_reject_text_perm"] = "Ignore"
st.session_state.rerun = True
with st.sidebar:
st.markdown(
"Clicking any of these button during labeling will pause the process and download the latest version."
)
dl_labeled_button = st.empty()
dl_labeled_button.download_button(
label="Download Labeled Data",
data=st.session_state["filtered_df"].to_csv(sep=";").encode("utf-8"),
file_name="labeled_data.csv",
mime="text/csv",
)
dl_prent_button = st.empty()
dl_prent_button.download_button(
label="Download PR-ENT results",
data=json.dumps(st.session_state["label_res"], indent=3).encode("ASCII"),
file_name="prent_results.json",
mime="application/json",
)
st.markdown(
"""# Apply codebook to the dataset
The currently loaded codebook will be used to find the event types of all event description in the currently loaded dataset. This can take some time (minutes to hours) depending on the size of the dataset (number of events, length of text).
"""
)
markdown_num_events = st.empty()
label_button = st.empty()
st.markdown("#### Main progress bar")
main_progress_bar = st.empty()
main_progress_bar = main_progress_bar.progress(0)
st.markdown("#### Last labeled event")
temp_text = st.empty()
temp_class = st.empty()
temp_text.markdown("**Event Descriptions:** {}".format(""))
temp_class.markdown("**Event Types Classification**: {}".format(""))
st.markdown(
"""#### Pause/Stop the event coding
Pressing the button once will stop the process at the next iteration."""
)
stop_button = st.button("Stop")
for event_type in st.session_state.codebook["events"]:
if event_type not in st.session_state.filtered_df.columns:
st.session_state.filtered_df[event_type] = 0
expected_time = 0
num_sentences = 0
for idx in st.session_state.filtered_df.index:
subsampled_data = st.session_state.filtered_df.loc[idx:idx]
list_text = subsampled_data[st.session_state["text_column_design_perm"]].values[:1]
list_index = subsampled_data.index[:1]
if list_text[0] != st.session_state.text:
reset_computation_results()
st.session_state.text = list_text[0]
num_sentences += get_num_sentences_in_list_text([st.session_state.text])
expected_time += st.session_state.time_comput * get_num_sentences_in_list_text(
[st.session_state.text]
)
markdown_num_events.markdown(
"Number of events: {} ¦ Number of sentences: {}".format(
len(st.session_state.filtered_df.index), num_sentences
)
)
if label_button.button(
"Label Data", disabled=len(st.session_state["filtered_df"]) == 0
):
num_text = 0
main_progress_bar.progress(num_text)
temp_text.markdown("")
temp_class.markdown("")
tot_num_text = len(st.session_state.filtered_df.index)
for idx in st.session_state.filtered_df.index:
subsampled_data = st.session_state.filtered_df.loc[idx:idx]
list_text = subsampled_data[st.session_state["text_column_design_perm"]].values[
:1
]
list_index = subsampled_data.index[:1]
if list_text[0] != st.session_state.text:
reset_computation_results()
st.session_state.text = list_text[0]
st.session_state.text_idx = list_index[0]
st.session_state.template_list = []
st.session_state.text_display = st.session_state.text
st.session_state.res = {}
res, time_comput = run_prent(
st.session_state.text,
st.session_state.codebook["templates"],
get_additional_words(),
progress=False,
display_text=False,
)
st.session_state.res = res
list_filled_templates = []
for template in st.session_state.res:
tmp = template.replace("[Z]", "{}")
list_filled_templates.extend(
[tmp.format(x) for x in st.session_state.res[template]]
)
list_event_type = find_event_types(
st.session_state.codebook, list_filled_templates
)
for event_type in list_event_type:
st.session_state.filtered_df.loc[idx, event_type] = 1
temp_text.markdown(
"**Event Descriptions:** {}".format(st.session_state.text_display)
)
temp_class.markdown(
"**Event Types Classification**: {}".format("; ".join(list_event_type))
)
# Save results
st.session_state.label_res[st.session_state.text_display] = {}
st.session_state.label_res[st.session_state.text_display][
"prent_results"
] = st.session_state.res
st.session_state.label_res[st.session_state.text_display]["prent_params"] = (
TOP_K,
NLI_LIMIT,
)
st.session_state.label_res[st.session_state.text_display][
"event_types"
] = list_event_type
num_text += 1
main_progress_bar.progress(num_text / tot_num_text)
# Need to update the buttons otherwise it doesn't update the downloaded file
# and the user would need to click two times
dl_labeled_button.download_button(
label="Download Labeled Data",
data=st.session_state["filtered_df"].to_csv(sep=";").encode("utf-8"),
file_name="labeled_data.csv",
mime="text/csv",
key="tmp",
)
dl_prent_button.download_button(
label="Download PR-ENT results",
data=json.dumps(st.session_state["label_res"], indent=3).encode("ASCII"),
file_name="prent_results.json",
mime="application/json",
)
|