cipherunhsiv commited on
Commit
2ebc037
·
verified ·
1 Parent(s): ac7b6ee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +87 -67
app.py CHANGED
@@ -3,36 +3,29 @@ import pandas as pd
3
  import plotly.graph_objects as go
4
  from ultralytics import YOLO
5
  import cv2
6
- import time
7
  import gradio as gr
8
 
9
- API_KEY = "ITWJ6NDTF45CBTDO"
10
 
11
- def get_stock_candlestick_data(symbol, interval="5min", output_size="compact"):
12
- """
13
- Fetch stock candlestick data from Alpha Vantage.
14
- """
15
  url = f"https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval={interval}&apikey={API_KEY}&outputsize={output_size}"
16
- print(f"Fetching data from: {url}") # Debugging
17
  response = requests.get(url)
18
  if response.status_code == 200:
19
  data = response.json()
20
- print("API Response:", data) # Debugging
21
  if f"Time Series ({interval})" in data:
22
  return data[f"Time Series ({interval})"]
23
  else:
24
- print("Error: No candlestick data found in response.")
25
- print(data)
26
  return None
27
  else:
28
- print(f"Error fetching data: {response.status_code}")
29
- print(response.text)
30
  return None
31
 
32
  def process_stock_candlestick_data(data):
33
- """
34
- Process Alpha Vantage stock candlestick data into a DataFrame.
35
- """
 
36
  rows = []
37
  for timestamp, values in data.items():
38
  rows.append({
@@ -43,12 +36,15 @@ def process_stock_candlestick_data(data):
43
  "close": float(values["4. close"]),
44
  "volume": float(values["5. volume"])
45
  })
46
- return pd.DataFrame(rows)
 
 
47
 
48
- def generate_candlestick_chart(df, n=50):
49
- """
50
- Generate a candlestick chart using Plotly with the last n data points.
51
- """
 
52
  df = df.tail(n) # Use only the last n rows
53
  fig = go.Figure(data=[go.Candlestick(
54
  x=df["timestamp"],
@@ -63,65 +59,89 @@ def generate_candlestick_chart(df, n=50):
63
  yaxis_title="Price",
64
  xaxis_rangeslider_visible=False
65
  )
66
- # Removed fig.show() since Gradio will display the image
67
- fig.write_image("candlestick.png")
68
 
69
- def yolo_model(img_path, model):
70
- """
71
- Run YOLO model on the image and count GAP UP and GAP DOWN patterns.
72
- """
73
- results = model(img_path)
74
- gap_up_count = 0
75
- gap_down_count = 0
76
- for result in results:
77
- classes = result.boxes.cls
78
- for cls in classes:
79
- if cls == 0:
80
- gap_down_count += 1
81
- elif cls == 1:
82
- gap_up_count += 1
83
- annotated_image = result.plot()
84
- return annotated_image, gap_up_count, gap_down_count
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
86
- def detect_gap_patterns(symbol):
87
- """
88
- Main function to fetch data, generate charts, and detect GAP patterns in near-real-time.
89
- """
90
- model = YOLO("/best.pt") # Load model once outside the loop
91
- while True:
92
- data = get_stock_candlestick_data(symbol)
93
- if not data:
94
- print("Failed to fetch data. Retrying in 15 seconds.")
95
- time.sleep(15)
96
- continue # Retry instead of exiting
97
-
98
- df = process_stock_candlestick_data(data)
99
- generate_candlestick_chart(df, n=50) # Generate chart with last 50 candles
100
- annotated_image, gap_up_count, gap_down_count = yolo_model("candlestick.png", model)
101
- cv2.imwrite("annotated_output.png", annotated_image)
102
- yield "annotated_output.png", gap_up_count, gap_down_count
103
- time.sleep(15) # Wait 15 seconds to respect API rate limits
 
 
 
 
 
 
 
 
104
 
105
  # Gradio Interface
106
  with gr.Blocks() as demo:
107
- gr.Markdown("# GAP Pattern Detection in Real-Time Stock Charts")
108
- gr.Markdown("Enter a stock symbol (e.g., AAPL) to detect GAP UP and GAP DOWN patterns in near-real-time candlestick charts.")
109
-
110
  with gr.Row():
111
  symbol_input = gr.Textbox(label="Stock Symbol", placeholder="Enter a stock symbol (e.g., AAPL)")
112
- submit_button = gr.Button("Start Real-Time Detection")
113
-
 
114
  with gr.Row():
115
  output_image = gr.Image(label="Annotated Candlestick Chart")
116
- gap_up_output = gr.Textbox(label="GAP UP Count")
117
- gap_down_output = gr.Textbox(label="GAP DOWN Count")
118
-
119
- # Start real-time detection when the button is clicked
 
 
120
  submit_button.click(
121
  fn=detect_gap_patterns,
122
- inputs=symbol_input,
123
  outputs=[output_image, gap_up_output, gap_down_output]
124
  )
125
 
126
  # Launch the Gradio app
127
- demo.launch(share=True, debug=True)
 
3
  import plotly.graph_objects as go
4
  from ultralytics import YOLO
5
  import cv2
6
+ import os
7
  import gradio as gr
8
 
9
+ API_KEY = "ITWJ6NDTF45CBTDO" # Consider using environment variables for API keys
10
 
11
+ def get_stock_candlestick_data(symbol, interval="1min", output_size="compact"):
12
+ """Fetch stock candlestick data from Alpha Vantage."""
 
 
13
  url = f"https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval={interval}&apikey={API_KEY}&outputsize={output_size}"
 
14
  response = requests.get(url)
15
  if response.status_code == 200:
16
  data = response.json()
 
17
  if f"Time Series ({interval})" in data:
18
  return data[f"Time Series ({interval})"]
19
  else:
 
 
20
  return None
21
  else:
 
 
22
  return None
23
 
24
  def process_stock_candlestick_data(data):
25
+ """Process Alpha Vantage stock candlestick data into a DataFrame."""
26
+ if not data:
27
+ return None
28
+
29
  rows = []
30
  for timestamp, values in data.items():
31
  rows.append({
 
36
  "close": float(values["4. close"]),
37
  "volume": float(values["5. volume"])
38
  })
39
+ df = pd.DataFrame(rows)
40
+ df = df.sort_values("timestamp") # Ensure chronological order
41
+ return df
42
 
43
+ def generate_candlestick_chart(df, n=50, output_path="candlestick.png"):
44
+ """Generate a candlestick chart using Plotly with the last n data points."""
45
+ if df is None or len(df) == 0:
46
+ return None
47
+
48
  df = df.tail(n) # Use only the last n rows
49
  fig = go.Figure(data=[go.Candlestick(
50
  x=df["timestamp"],
 
59
  yaxis_title="Price",
60
  xaxis_rangeslider_visible=False
61
  )
62
+ fig.write_image(output_path)
63
+ return output_path
64
 
65
+ def yolo_model(img_path, model_path):
66
+ """Run YOLO model on the image and count GAP UP and GAP DOWN patterns."""
67
+ if not os.path.exists(img_path):
68
+ return None, 0, 0
69
+
70
+ # Load model each time to avoid persistence issues in Spaces
71
+ try:
72
+ model = YOLO(model_path)
73
+ results = model(img_path)
74
+ gap_up_count = 0
75
+ gap_down_count = 0
76
+
77
+ for result in results:
78
+ boxes = result.boxes
79
+ if hasattr(boxes, 'cls') and len(boxes.cls) > 0:
80
+ classes = boxes.cls.cpu().numpy() if hasattr(boxes.cls, 'cpu') else boxes.cls
81
+ for cls in classes:
82
+ if int(cls) == 0:
83
+ gap_down_count += 1
84
+ elif int(cls) == 1:
85
+ gap_up_count += 1
86
+
87
+ annotated_image = results[0].plot()
88
+ output_path = "annotated_output.png"
89
+ cv2.imwrite(output_path, annotated_image)
90
+ return output_path, gap_up_count, gap_down_count
91
+ except Exception as e:
92
+ print(f"Error running YOLO model: {e}")
93
+ return None, 0, 0
94
 
95
+ def detect_gap_patterns(symbol, model_path="best.pt"):
96
+ """Non-streaming function to fetch data, generate charts, and detect GAP patterns."""
97
+ # Check if the model file exists
98
+ if not os.path.exists(model_path):
99
+ return None, f"Model not found at {model_path}", f"Model not found at {model_path}"
100
+
101
+ # Get stock data
102
+ data = get_stock_candlestick_data(symbol)
103
+ if not data:
104
+ return None, "Failed to fetch stock data", "Failed to fetch stock data"
105
+
106
+ # Process data and generate chart
107
+ df = process_stock_candlestick_data(data)
108
+ if df is None or len(df) == 0:
109
+ return None, "No valid stock data available", "No valid stock data available"
110
+
111
+ chart_path = generate_candlestick_chart(df, n=50)
112
+ if not chart_path or not os.path.exists(chart_path):
113
+ return None, "Failed to generate chart", "Failed to generate chart"
114
+
115
+ # Run YOLO detection
116
+ annotated_path, gap_up_count, gap_down_count = yolo_model(chart_path, model_path)
117
+ if not annotated_path:
118
+ return None, "Failed to run detection model", "Failed to run detection model"
119
+
120
+ return annotated_path, f"GAP UP Count: {gap_up_count}", f"GAP DOWN Count: {gap_down_count}"
121
 
122
  # Gradio Interface
123
  with gr.Blocks() as demo:
124
+ gr.Markdown("# GAP Pattern Detection in Stock Charts")
125
+ gr.Markdown("Enter a stock symbol (e.g., AAPL) to detect GAP UP and GAP DOWN patterns in candlestick charts.")
126
+
127
  with gr.Row():
128
  symbol_input = gr.Textbox(label="Stock Symbol", placeholder="Enter a stock symbol (e.g., AAPL)")
129
+ model_path_input = gr.Textbox(label="Model Path", value="best.pt", placeholder="Path to YOLO model file")
130
+ submit_button = gr.Button("Detect Patterns")
131
+
132
  with gr.Row():
133
  output_image = gr.Image(label="Annotated Candlestick Chart")
134
+
135
+ with gr.Row():
136
+ gap_up_output = gr.Textbox(label="GAP UP Results")
137
+ gap_down_output = gr.Textbox(label="GAP DOWN Results")
138
+
139
+ # Run detection when the button is clicked
140
  submit_button.click(
141
  fn=detect_gap_patterns,
142
+ inputs=[symbol_input, model_path_input],
143
  outputs=[output_image, gap_up_output, gap_down_output]
144
  )
145
 
146
  # Launch the Gradio app
147
+ demo.launch()