Spaces:
Sleeping
Sleeping
cindyangelira
commited on
Commit
·
6d35993
1
Parent(s):
66bfec7
Add application file
Browse files- .gitignore +2 -0
- app.py +60 -0
- ner_colored_output.html +0 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
demo.ipynb
|
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
from spacy import displacy
|
4 |
+
|
5 |
+
# load model pipeline globally
|
6 |
+
ner_pipe = pipeline("token-classification", model="cindyangelira/ner-roberta-large-bahasa-indonesia")
|
7 |
+
|
8 |
+
# define colors for each tag
|
9 |
+
def get_colors():
|
10 |
+
return {
|
11 |
+
"O": "#ffffff", # White for 'O'
|
12 |
+
"PERSON": "#ffadad", # Light red for 'PERSON'
|
13 |
+
"LOCATION": "#ffda83", # Light yellow for 'LOCATION'
|
14 |
+
"DOB": "#ffadad", # Light red for 'DOB'
|
15 |
+
"EMAIL": "#85e0e0", # Light cyan for 'EMAIL'
|
16 |
+
"GENDER": "#c3c3e0", # Light gray for 'GENDER'
|
17 |
+
"ACCOUNT": "#b0e0e6", # Light blue for 'ACCOUNT'
|
18 |
+
"ID": "#800080", # Purple for 'ID'
|
19 |
+
"PHONE": "#d1ff85" # Light green for 'PHONE NUMBER'
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
def process_prediction(text, pred):
|
24 |
+
colors = get_colors()
|
25 |
+
|
26 |
+
for token in pred:
|
27 |
+
token['label'] = token['entity'].replace('B-', '').replace('I-', '')
|
28 |
+
|
29 |
+
ents = [{'start': token['start'], 'end': token['end'], 'label': token['label']} for token in pred]
|
30 |
+
|
31 |
+
doc = {
|
32 |
+
"text": text,
|
33 |
+
"ents": ents,
|
34 |
+
"title": None
|
35 |
+
}
|
36 |
+
|
37 |
+
options = {"ents": list(colors.keys()), "colors": colors}
|
38 |
+
html = displacy.render(doc, style="ent", manual=True, options=options)
|
39 |
+
return html
|
40 |
+
|
41 |
+
|
42 |
+
def ner_visualization(text):
|
43 |
+
predictions = ner_pipe(text)
|
44 |
+
return process_prediction(text, predictions)
|
45 |
+
|
46 |
+
|
47 |
+
def build_interface():
|
48 |
+
iface = gr.Interface(
|
49 |
+
fn=ner_visualization, # Main function for NER visualization
|
50 |
+
inputs=gr.Textbox(label="Input Text"),# Input textbox
|
51 |
+
outputs="html", # Output is HTML with rendered NER
|
52 |
+
title="NER Bahasa Indonesia", # Title of the app
|
53 |
+
description="Enter text to see named entity recognition results highlighted."
|
54 |
+
)
|
55 |
+
return iface
|
56 |
+
|
57 |
+
|
58 |
+
if __name__ == "__main__":
|
59 |
+
app = build_interface()
|
60 |
+
app.launch()
|
ner_colored_output.html
ADDED
File without changes
|