import gradio as gr from llama_cpp import Llama llm = Llama( model_path="yugogpt-q4_k_s.gguf", n_ctx=4096, # Doubled context length n_threads=8, # Increased threads n_batch=1024, # Increased batch size use_mlock=True, use_mmap=True, n_gpu_layers=0, # Set this to higher number if GPU available verbose=False # Reduced logging for better performance ) def format_chat_history(history): formatted_history = "" for user_msg, assistant_msg in history: formatted_history += f"USER: {user_msg}\nA: {assistant_msg}\n" return formatted_history def chat(message, history): system_prompt = """Ti si YugoGPT, profesionalni AI asistent koji daje precizne i korisne informacije. PRAVILA: - Ne izmišljam informacije - Ako nemam trženu informaciju to jasno naglasim - Dajem proverene jasne i konkretne informacije - Koristim precizan srpski jezik - Fokusiram se na činjenice - Odgovaram direktno i efikasno - Održavam profesionalan ton""" chat_history = format_chat_history(history) full_prompt = f"""SYSTEM: {system_prompt} KONTEKST: {chat_history} USER: {message} A: """ response = llm( full_prompt, max_tokens=4096, # Increased max tokens temperature=0.7, # Keeping it precise top_p=0.1, repeat_penalty=1.2, top_k=20, stop=["USER:", "\n\n"], stream=True ) partial_message = "" for chunk in response: if chunk and chunk['choices'][0]['text']: partial_message += chunk['choices'][0]['text'] yield partial_message demo = gr.ChatInterface( fn=chat, title="YugoGPT Stručni Asistent", description="Profesionalni izvor informacija i stručne pomoći, PAŽNJA, ZNA DA LAŽE!!!", examples=[ "Koji su osnovni principi relacionih baza podataka?", "Objasnite kako funkcioniše HTTP protokol", "Koje su glavne komponente računara i njihove funkcije?" ] ) if __name__ == "__main__": demo.queue().launch( server_name="0.0.0.0", server_port=7860, share=False )