import gradio as gr import torch from transformers import WhisperProcessor, WhisperForConditionalGeneration import soundfile as sf import numpy as np from scipy import signal import os # Set up directories home_dir = os.path.expanduser("~") cache_dir = os.path.join(home_dir, "cache") flagged_dir = os.path.join(home_dir, "flagged") # Configure cache os.environ['TRANSFORMERS_CACHE'] = cache_dir os.makedirs(cache_dir, exist_ok=True) processor = WhisperProcessor.from_pretrained("openai/whisper-large-v3", cache_dir=cache_dir) model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v3", cache_dir=cache_dir) def process_audio(audio_path): waveform, sr = sf.read(audio_path) if len(waveform.shape) > 1: waveform = waveform.mean(axis=1) if sr != 16000: num_samples = int(len(waveform) * 16000 / sr) waveform = signal.resample(waveform, num_samples) inputs = processor(waveform, sampling_rate=16000, return_tensors="pt") predicted_ids = model.generate(**inputs, language="mk") return processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] # Create Gradio interface with custom flagging directory demo = gr.Interface( fn=process_audio, inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"), outputs="text", title="Македонско препознавање на говор / Macedonian Speech Recognition", description="Качете аудио или користете микрофон за транскрипција на македонски говор / Upload audio or use microphone to transcribe Macedonian speech", flagging_dir=flagged_dir ) demo.launch(server_name="0.0.0.0", server_port=7860)