import gradio as gr import torch from transformers import WhisperProcessor, WhisperForConditionalGeneration import soundfile as sf import numpy as np from scipy import signal # Ensure the model runs on GPU if available device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Running on device: {device}") # Load the model and processor print("Loading Whisper model for Macedonian transcription...") processor = WhisperProcessor.from_pretrained("openai/whisper-large-v3") model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v3").to(device) print("✓ Model loaded successfully!") def process_audio(audio_path): try: # Load and resample to 16kHz using scipy waveform, sr = sf.read(audio_path) if len(waveform.shape) > 1: # Convert stereo to mono waveform = waveform.mean(axis=1) if sr != 16000: # Resample if necessary num_samples = int(len(waveform) * 16000 / sr) waveform = signal.resample(waveform, num_samples) # Process the audio inputs = processor(waveform, sampling_rate=16000, return_tensors="pt").to(device) print("Transcribing...") predicted_ids = model.generate(**inputs, language="mk") transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] return transcription except Exception as e: return f"Error during transcription: {str(e)}" # Gradio interface demo = gr.Interface( fn=process_audio, inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"), outputs="text", title="Македонско препознавање на говор / Macedonian Speech Recognition", description="Качете аудио или користете микрофон за транскрипција на македонски говор / Upload audio or use microphone to transcribe Macedonian speech" ) if __name__ == "__main__": demo.launch(share=True)