Macedonian-ASR / app.py
cigol123's picture
Update app.py
12f2e01 verified
import gradio as gr
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import soundfile as sf
import numpy as np
from scipy import signal
import os
# Set up directories
home_dir = os.path.expanduser("~")
cache_dir = os.path.join(home_dir, "cache")
flagged_dir = os.path.join(home_dir, "flagged")
# Configure cache
os.environ['TRANSFORMERS_CACHE'] = cache_dir
os.makedirs(cache_dir, exist_ok=True)
processor = WhisperProcessor.from_pretrained("openai/whisper-large-v3", cache_dir=cache_dir)
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v3", cache_dir=cache_dir)
def process_audio(audio_path):
waveform, sr = sf.read(audio_path)
if len(waveform.shape) > 1:
waveform = waveform.mean(axis=1)
if sr != 16000:
num_samples = int(len(waveform) * 16000 / sr)
waveform = signal.resample(waveform, num_samples)
inputs = processor(waveform, sampling_rate=16000, return_tensors="pt")
predicted_ids = model.generate(**inputs, language="mk")
return processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
# Create Gradio interface with custom flagging directory
demo = gr.Interface(
fn=process_audio,
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
outputs="text",
title="Македонско препознавање на говор / Macedonian Speech Recognition",
description="Качете аудио или користете микрофон за транскрипција на македонски говор / Upload audio or use microphone to transcribe Macedonian speech",
flagging_dir=flagged_dir
)
demo.launch(server_name="0.0.0.0", server_port=7860)