Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
import soundfile as sf | |
import numpy as np | |
from scipy import signal | |
import os | |
# Set up directories | |
home_dir = os.path.expanduser("~") | |
cache_dir = os.path.join(home_dir, "cache") | |
flagged_dir = os.path.join(home_dir, "flagged") | |
# Configure cache | |
os.environ['TRANSFORMERS_CACHE'] = cache_dir | |
os.makedirs(cache_dir, exist_ok=True) | |
processor = WhisperProcessor.from_pretrained("openai/whisper-large-v3", cache_dir=cache_dir) | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v3", cache_dir=cache_dir) | |
def process_audio(audio_path): | |
waveform, sr = sf.read(audio_path) | |
if len(waveform.shape) > 1: | |
waveform = waveform.mean(axis=1) | |
if sr != 16000: | |
num_samples = int(len(waveform) * 16000 / sr) | |
waveform = signal.resample(waveform, num_samples) | |
inputs = processor(waveform, sampling_rate=16000, return_tensors="pt") | |
predicted_ids = model.generate(**inputs, language="mk") | |
return processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] | |
# Create Gradio interface with custom flagging directory | |
demo = gr.Interface( | |
fn=process_audio, | |
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"), | |
outputs="text", | |
title="Македонско препознавање на говор / Macedonian Speech Recognition", | |
description="Качете аудио или користете микрофон за транскрипција на македонски говор / Upload audio or use microphone to transcribe Macedonian speech", | |
flagging_dir=flagged_dir | |
) | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |