Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
import soundfile as sf | |
import numpy as np | |
from scipy import signal | |
import os | |
# Set the cache directory to a writable location | |
cache_dir = "/tmp/.cache" | |
os.environ["TRANSFORMERS_CACHE"] = cache_dir | |
os.environ["HF_DATASETS_CACHE"] = cache_dir | |
os.environ["TORCH_HOME"] = cache_dir # Set PyTorch cache directory | |
# Ensure the cache directory exists and is writable | |
os.makedirs(cache_dir, exist_ok=True) | |
# Load the base Whisper model and processor | |
def load_model(): | |
print("Loading base Whisper model and processor...") | |
processor = WhisperProcessor.from_pretrained("openai/whisper-large-v3") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v3") | |
# Load the fine-tuned weights from the Macedonian-ASR repository | |
print("Loading fine-tuned weights from Macedonian-ASR...") | |
model.load_state_dict(torch.hub.load_state_dict_from_url( | |
"https://huggingface.co/Macedonian-ASR/whisper-large-v3-macedonian-asr/resolve/main/pytorch_model.bin", | |
map_location="cpu", | |
model_dir=cache_dir # Save downloaded weights to the writable cache directory | |
)) | |
print("✓ Model and processor loaded successfully!") | |
return processor, model | |
processor, model = load_model() | |
def process_audio(audio_path): | |
# Load and resample to 16kHz using scipy | |
waveform, sr = sf.read(audio_path) | |
if len(waveform.shape) > 1: # Convert stereo to mono | |
waveform = waveform.mean(axis=1) | |
if sr != 16000: # Resample if necessary | |
num_samples = int(len(waveform) * 16000 / sr) | |
waveform = signal.resample(waveform, num_samples) | |
# Process the audio | |
inputs = processor(waveform, sampling_rate=16000, return_tensors="pt") | |
predicted_ids = model.generate(**inputs, language="mk") | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] | |
return transcription | |
# Gradio interface | |
demo = gr.Interface( | |
fn=process_audio, | |
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"), | |
outputs="text", | |
title="Македонско препознавање на говор / Macedonian Speech Recognition", | |
description="Качете аудио или користете микрофон за транскрипција на македонски говор / Upload audio or use microphone to transcribe Macedonian speech" | |
) | |
if __name__ == "__main__": | |
demo.launch() |