Macedonian-ASR / app.py
cigol123's picture
Update app.py
cb13fc4 verified
raw
history blame
1.68 kB
import gradio as gr
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import soundfile as sf
import numpy as np
from scipy import signal
import os
# Set up directories
cache_dir = "/data/cache"
flagged_dir = "/data/flagged"
os.makedirs(cache_dir, exist_ok=True)
os.makedirs(flagged_dir, exist_ok=True)
processor = WhisperProcessor.from_pretrained("openai/whisper-large-v3", cache_dir=cache_dir)
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v3", cache_dir=cache_dir)
def process_audio(audio_path):
waveform, sr = sf.read(audio_path)
if len(waveform.shape) > 1:
waveform = waveform.mean(axis=1)
if sr != 16000:
num_samples = int(len(waveform) * 16000 / sr)
waveform = signal.resample(waveform, num_samples)
inputs = processor(waveform, sampling_rate=16000, return_tensors="pt")
predicted_ids = model.generate(**inputs, language="mk")
return processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
demo = gr.Interface(
fn=process_audio,
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
outputs="text",
title="Македонско препознавање на говор / Macedonian Speech Recognition",
description="Качете аудио или користете микрофон за транскрипција на македонски говор / Upload audio or use microphone to transcribe Macedonian speech",
flagging_dir=flagged_dir,
allow_flagging="manual",
flagging_options=["Incorrect Transcription", "Good Transcription"]
)
demo.launch(server_name="0.0.0.0", server_port=7860)