Spaces:
Running
Running
File size: 1,988 Bytes
9ece3ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import soundfile as sf
import numpy as np
from scipy import signal
# Ensure the model runs on GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running on device: {device}")
# Load the model and processor
print("Loading Whisper model for Macedonian transcription...")
processor = WhisperProcessor.from_pretrained("openai/whisper-large-v3")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v3").to(device)
print("✓ Model loaded successfully!")
def process_audio(audio_path):
try:
# Load and resample to 16kHz using scipy
waveform, sr = sf.read(audio_path)
if len(waveform.shape) > 1: # Convert stereo to mono
waveform = waveform.mean(axis=1)
if sr != 16000: # Resample if necessary
num_samples = int(len(waveform) * 16000 / sr)
waveform = signal.resample(waveform, num_samples)
# Process the audio
inputs = processor(waveform, sampling_rate=16000, return_tensors="pt").to(device)
print("Transcribing...")
predicted_ids = model.generate(**inputs, language="mk")
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
except Exception as e:
return f"Error during transcription: {str(e)}"
# Gradio interface
demo = gr.Interface(
fn=process_audio,
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
outputs="text",
title="Македонско препознавање на говор / Macedonian Speech Recognition",
description="Качете аудио или користете микрофон за транскрипција на македонски говор / Upload audio or use microphone to transcribe Macedonian speech"
)
if __name__ == "__main__":
demo.launch(share=True) |