Spaces:
Runtime error
Runtime error
Commit
ยท
71fd9c5
1
Parent(s):
fedb936
feat: add token roulation logic
Browse files
src/distilabel_dataset_generator/pipelines/sft.py
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
-
import os
|
| 2 |
-
|
| 3 |
import pandas as pd
|
| 4 |
from distilabel.llms import InferenceEndpointsLLM
|
| 5 |
from distilabel.pipeline import Pipeline
|
| 6 |
from distilabel.steps import KeepColumns
|
| 7 |
from distilabel.steps.tasks import MagpieGenerator, TextGeneration
|
| 8 |
|
|
|
|
|
|
|
| 9 |
INFORMATION_SEEKING_PROMPT = (
|
| 10 |
"You are an AI assistant designed to provide accurate and concise information on a wide"
|
| 11 |
" range of topics. Your purpose is to assist users in finding specific facts,"
|
|
@@ -139,6 +139,7 @@ _STOP_SEQUENCES = [
|
|
| 139 |
" \n\n",
|
| 140 |
]
|
| 141 |
DEFAULT_BATCH_SIZE = 1
|
|
|
|
| 142 |
|
| 143 |
|
| 144 |
def _get_output_mappings(num_turns):
|
|
@@ -189,15 +190,18 @@ if __name__ == "__main__":
|
|
| 189 |
|
| 190 |
|
| 191 |
def get_pipeline(num_turns, num_rows, system_prompt):
|
|
|
|
| 192 |
input_mappings = _get_output_mappings(num_turns)
|
| 193 |
output_mappings = input_mappings
|
|
|
|
|
|
|
| 194 |
if num_turns == 1:
|
| 195 |
with Pipeline(name="sft") as pipeline:
|
| 196 |
magpie = MagpieGenerator(
|
| 197 |
llm=InferenceEndpointsLLM(
|
| 198 |
model_id=MODEL,
|
| 199 |
tokenizer_id=MODEL,
|
| 200 |
-
api_key=
|
| 201 |
magpie_pre_query_template="llama3",
|
| 202 |
generation_kwargs={
|
| 203 |
"temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
|
|
@@ -218,7 +222,7 @@ def get_pipeline(num_turns, num_rows, system_prompt):
|
|
| 218 |
llm=InferenceEndpointsLLM(
|
| 219 |
model_id=MODEL,
|
| 220 |
tokenizer_id=MODEL,
|
| 221 |
-
api_key=
|
| 222 |
generation_kwargs={"temperature": 0.8, "max_new_tokens": 1024},
|
| 223 |
),
|
| 224 |
system_prompt=system_prompt,
|
|
@@ -239,7 +243,7 @@ def get_pipeline(num_turns, num_rows, system_prompt):
|
|
| 239 |
llm=InferenceEndpointsLLM(
|
| 240 |
model_id=MODEL,
|
| 241 |
tokenizer_id=MODEL,
|
| 242 |
-
api_key=
|
| 243 |
magpie_pre_query_template="llama3",
|
| 244 |
generation_kwargs={
|
| 245 |
"temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
|
|
@@ -262,9 +266,12 @@ def get_pipeline(num_turns, num_rows, system_prompt):
|
|
| 262 |
|
| 263 |
|
| 264 |
def get_prompt_generation_step():
|
|
|
|
|
|
|
|
|
|
| 265 |
generate_description = TextGeneration(
|
| 266 |
llm=InferenceEndpointsLLM(
|
| 267 |
-
api_key=
|
| 268 |
model_id=MODEL,
|
| 269 |
tokenizer_id=MODEL,
|
| 270 |
generation_kwargs={
|
|
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
from distilabel.llms import InferenceEndpointsLLM
|
| 3 |
from distilabel.pipeline import Pipeline
|
| 4 |
from distilabel.steps import KeepColumns
|
| 5 |
from distilabel.steps.tasks import MagpieGenerator, TextGeneration
|
| 6 |
|
| 7 |
+
from src.distilabel_dataset_generator.utils import HF_TOKENS
|
| 8 |
+
|
| 9 |
INFORMATION_SEEKING_PROMPT = (
|
| 10 |
"You are an AI assistant designed to provide accurate and concise information on a wide"
|
| 11 |
" range of topics. Your purpose is to assist users in finding specific facts,"
|
|
|
|
| 139 |
" \n\n",
|
| 140 |
]
|
| 141 |
DEFAULT_BATCH_SIZE = 1
|
| 142 |
+
TOKEN_INDEX = 0
|
| 143 |
|
| 144 |
|
| 145 |
def _get_output_mappings(num_turns):
|
|
|
|
| 190 |
|
| 191 |
|
| 192 |
def get_pipeline(num_turns, num_rows, system_prompt):
|
| 193 |
+
global TOKEN_INDEX
|
| 194 |
input_mappings = _get_output_mappings(num_turns)
|
| 195 |
output_mappings = input_mappings
|
| 196 |
+
api_key = HF_TOKENS[TOKEN_INDEX % len(HF_TOKENS)]
|
| 197 |
+
TOKEN_INDEX += 1
|
| 198 |
if num_turns == 1:
|
| 199 |
with Pipeline(name="sft") as pipeline:
|
| 200 |
magpie = MagpieGenerator(
|
| 201 |
llm=InferenceEndpointsLLM(
|
| 202 |
model_id=MODEL,
|
| 203 |
tokenizer_id=MODEL,
|
| 204 |
+
api_key=api_key,
|
| 205 |
magpie_pre_query_template="llama3",
|
| 206 |
generation_kwargs={
|
| 207 |
"temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
|
|
|
|
| 222 |
llm=InferenceEndpointsLLM(
|
| 223 |
model_id=MODEL,
|
| 224 |
tokenizer_id=MODEL,
|
| 225 |
+
api_key=api_key,
|
| 226 |
generation_kwargs={"temperature": 0.8, "max_new_tokens": 1024},
|
| 227 |
),
|
| 228 |
system_prompt=system_prompt,
|
|
|
|
| 243 |
llm=InferenceEndpointsLLM(
|
| 244 |
model_id=MODEL,
|
| 245 |
tokenizer_id=MODEL,
|
| 246 |
+
api_key=api_key,
|
| 247 |
magpie_pre_query_template="llama3",
|
| 248 |
generation_kwargs={
|
| 249 |
"temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
|
|
|
|
| 266 |
|
| 267 |
|
| 268 |
def get_prompt_generation_step():
|
| 269 |
+
global TOKEN_INDEX
|
| 270 |
+
api_key = HF_TOKENS[TOKEN_INDEX % len(HF_TOKENS)]
|
| 271 |
+
TOKEN_INDEX += 1
|
| 272 |
generate_description = TextGeneration(
|
| 273 |
llm=InferenceEndpointsLLM(
|
| 274 |
+
api_key=api_key,
|
| 275 |
model_id=MODEL,
|
| 276 |
tokenizer_id=MODEL,
|
| 277 |
generation_kwargs={
|
src/distilabel_dataset_generator/utils.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from gradio.oauth import (
|
| 3 |
OAUTH_CLIENT_ID,
|
|
@@ -8,6 +10,9 @@ from gradio.oauth import (
|
|
| 8 |
)
|
| 9 |
from huggingface_hub import whoami
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
_CHECK_IF_SPACE_IS_SET = (
|
| 12 |
all(
|
| 13 |
[
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
import gradio as gr
|
| 4 |
from gradio.oauth import (
|
| 5 |
OAUTH_CLIENT_ID,
|
|
|
|
| 10 |
)
|
| 11 |
from huggingface_hub import whoami
|
| 12 |
|
| 13 |
+
HF_TOKENS = os.getenv("HF_TOKEN") + [os.getenv(f"HF_TOKEN_{i}") for i in range(1, 10)]
|
| 14 |
+
HF_TOKENS = [token for token in HF_TOKENS if token]
|
| 15 |
+
|
| 16 |
_CHECK_IF_SPACE_IS_SET = (
|
| 17 |
all(
|
| 18 |
[
|