Spaces:
Runtime error
Runtime error
hide evaluation, update temperature
Browse files- src/synthetic_dataset_generator/app.py +3 -3
- src/synthetic_dataset_generator/apps/base.py +0 -44
- src/synthetic_dataset_generator/apps/sft.py +13 -8
- src/synthetic_dataset_generator/apps/textcat.py +10 -4
- src/synthetic_dataset_generator/pipelines/sft.py +7 -7
- src/synthetic_dataset_generator/pipelines/textcat.py +6 -5
src/synthetic_dataset_generator/app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
from synthetic_dataset_generator._tabbedinterface import TabbedInterface
|
| 2 |
-
from synthetic_dataset_generator.apps.eval import app as eval_app
|
| 3 |
from synthetic_dataset_generator.apps.readme import app as readme_app
|
| 4 |
from synthetic_dataset_generator.apps.sft import app as sft_app
|
| 5 |
from synthetic_dataset_generator.apps.textcat import app as textcat_app
|
|
@@ -23,8 +23,8 @@ button[role="tab"][aria-selected="true"]:hover {border-color: var(--button-prima
|
|
| 23 |
image = """<br><img src="https://raw.githubusercontent.com/argilla-io/synthetic-data-generator/main/assets/logo.svg" alt="Synthetic Data Generator Logo" style="display: block; margin-left: auto; margin-right: auto; width: clamp(50%, 400px, 100%)"/>"""
|
| 24 |
|
| 25 |
demo = TabbedInterface(
|
| 26 |
-
[textcat_app, sft_app,
|
| 27 |
-
["Text Classification", "Supervised Fine-Tuning", "
|
| 28 |
css=css,
|
| 29 |
title=image,
|
| 30 |
head="Synthetic Data Generator",
|
|
|
|
| 1 |
from synthetic_dataset_generator._tabbedinterface import TabbedInterface
|
| 2 |
+
# from synthetic_dataset_generator.apps.eval import app as eval_app
|
| 3 |
from synthetic_dataset_generator.apps.readme import app as readme_app
|
| 4 |
from synthetic_dataset_generator.apps.sft import app as sft_app
|
| 5 |
from synthetic_dataset_generator.apps.textcat import app as textcat_app
|
|
|
|
| 23 |
image = """<br><img src="https://raw.githubusercontent.com/argilla-io/synthetic-data-generator/main/assets/logo.svg" alt="Synthetic Data Generator Logo" style="display: block; margin-left: auto; margin-right: auto; width: clamp(50%, 400px, 100%)"/>"""
|
| 24 |
|
| 25 |
demo = TabbedInterface(
|
| 26 |
+
[textcat_app, sft_app, readme_app],
|
| 27 |
+
["Text Classification", "Supervised Fine-Tuning", "README"],
|
| 28 |
css=css,
|
| 29 |
title=image,
|
| 30 |
head="Synthetic Data Generator",
|
src/synthetic_dataset_generator/apps/base.py
CHANGED
|
@@ -67,50 +67,6 @@ def push_pipeline_code_to_hub(
|
|
| 67 |
progress(1.0, desc="Pipeline code uploaded")
|
| 68 |
|
| 69 |
|
| 70 |
-
def push_dataset_to_hub(
|
| 71 |
-
dataframe: pd.DataFrame,
|
| 72 |
-
private: bool = True,
|
| 73 |
-
org_name: str = None,
|
| 74 |
-
repo_name: str = None,
|
| 75 |
-
oauth_token: Union[OAuthToken, None] = None,
|
| 76 |
-
progress=gr.Progress(),
|
| 77 |
-
labels: List[str] = None,
|
| 78 |
-
num_labels: int = None,
|
| 79 |
-
task: str = TEXTCAT_TASK,
|
| 80 |
-
) -> pd.DataFrame:
|
| 81 |
-
progress(0.1, desc="Setting up dataset")
|
| 82 |
-
repo_id = validate_push_to_hub(org_name, repo_name)
|
| 83 |
-
|
| 84 |
-
if task == TEXTCAT_TASK:
|
| 85 |
-
if num_labels == 1:
|
| 86 |
-
dataframe["label"] = dataframe["label"].replace("", None)
|
| 87 |
-
features = Features(
|
| 88 |
-
{"text": Value("string"), "label": ClassLabel(names=labels)}
|
| 89 |
-
)
|
| 90 |
-
else:
|
| 91 |
-
features = Features(
|
| 92 |
-
{
|
| 93 |
-
"text": Value("string"),
|
| 94 |
-
"labels": Sequence(feature=ClassLabel(names=labels)),
|
| 95 |
-
}
|
| 96 |
-
)
|
| 97 |
-
distiset = Distiset(
|
| 98 |
-
{"default": Dataset.from_pandas(dataframe, features=features)}
|
| 99 |
-
)
|
| 100 |
-
else:
|
| 101 |
-
distiset = Distiset({"default": Dataset.from_pandas(dataframe)})
|
| 102 |
-
progress(0.2, desc="Pushing dataset to hub")
|
| 103 |
-
distiset.push_to_hub(
|
| 104 |
-
repo_id=repo_id,
|
| 105 |
-
private=private,
|
| 106 |
-
include_script=False,
|
| 107 |
-
token=oauth_token.token,
|
| 108 |
-
create_pr=False,
|
| 109 |
-
)
|
| 110 |
-
progress(1.0, desc="Dataset pushed to hub")
|
| 111 |
-
return dataframe
|
| 112 |
-
|
| 113 |
-
|
| 114 |
def validate_push_to_hub(org_name, repo_name):
|
| 115 |
repo_id = (
|
| 116 |
f"{org_name}/{repo_name}"
|
|
|
|
| 67 |
progress(1.0, desc="Pipeline code uploaded")
|
| 68 |
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
def validate_push_to_hub(org_name, repo_name):
|
| 71 |
repo_id = (
|
| 72 |
f"{org_name}/{repo_name}"
|
src/synthetic_dataset_generator/apps/sft.py
CHANGED
|
@@ -15,7 +15,7 @@ from synthetic_dataset_generator.apps.base import (
|
|
| 15 |
validate_argilla_user_workspace_dataset,
|
| 16 |
validate_push_to_hub,
|
| 17 |
)
|
| 18 |
-
from synthetic_dataset_generator.constants import DEFAULT_BATCH_SIZE, SFT_AVAILABLE
|
| 19 |
from synthetic_dataset_generator.pipelines.embeddings import (
|
| 20 |
get_embeddings,
|
| 21 |
get_sentence_embedding_dimensions,
|
|
@@ -49,10 +49,10 @@ def convert_dataframe_messages(dataframe: pd.DataFrame) -> pd.DataFrame:
|
|
| 49 |
return dataframe
|
| 50 |
|
| 51 |
|
| 52 |
-
def generate_system_prompt(dataset_description,
|
| 53 |
progress(0.0, desc="Generating system prompt")
|
| 54 |
progress(0.3, desc="Initializing text generation")
|
| 55 |
-
generate_description = get_prompt_generator(
|
| 56 |
progress(0.7, desc="Generating system prompt")
|
| 57 |
result = next(
|
| 58 |
generate_description.process(
|
|
@@ -92,12 +92,13 @@ def generate_dataset(
|
|
| 92 |
system_prompt: str,
|
| 93 |
num_turns: int = 1,
|
| 94 |
num_rows: int = 10,
|
|
|
|
| 95 |
is_sample: bool = False,
|
| 96 |
progress=gr.Progress(),
|
| 97 |
) -> pd.DataFrame:
|
| 98 |
progress(0.0, desc="(1/2) Generating instructions")
|
| 99 |
-
magpie_generator = get_magpie_generator(system_prompt, num_turns, is_sample)
|
| 100 |
-
response_generator = get_response_generator(system_prompt, num_turns, is_sample)
|
| 101 |
total_steps: int = num_rows * 2
|
| 102 |
batch_size = DEFAULT_BATCH_SIZE
|
| 103 |
|
|
@@ -216,6 +217,7 @@ def push_dataset(
|
|
| 216 |
num_turns: int = 1,
|
| 217 |
num_rows: int = 10,
|
| 218 |
private: bool = False,
|
|
|
|
| 219 |
oauth_token: Union[gr.OAuthToken, None] = None,
|
| 220 |
progress=gr.Progress(),
|
| 221 |
) -> pd.DataFrame:
|
|
@@ -223,6 +225,7 @@ def push_dataset(
|
|
| 223 |
system_prompt=system_prompt,
|
| 224 |
num_turns=num_turns,
|
| 225 |
num_rows=num_rows,
|
|
|
|
| 226 |
)
|
| 227 |
push_dataset_to_hub(dataframe, org_name, repo_name, oauth_token, private)
|
| 228 |
try:
|
|
@@ -439,7 +442,7 @@ with gr.Blocks() as app:
|
|
| 439 |
label="Temperature",
|
| 440 |
minimum=0.1,
|
| 441 |
maximum=1,
|
| 442 |
-
value=0.
|
| 443 |
step=0.1,
|
| 444 |
interactive=True,
|
| 445 |
)
|
|
@@ -463,6 +466,7 @@ with gr.Blocks() as app:
|
|
| 463 |
system_prompt=system_prompt.value,
|
| 464 |
num_turns=num_turns.value,
|
| 465 |
num_rows=num_rows.value,
|
|
|
|
| 466 |
)
|
| 467 |
pipeline_code = gr.Code(
|
| 468 |
value=code,
|
|
@@ -472,7 +476,7 @@ with gr.Blocks() as app:
|
|
| 472 |
|
| 473 |
load_btn.click(
|
| 474 |
fn=generate_system_prompt,
|
| 475 |
-
inputs=[dataset_description
|
| 476 |
outputs=[system_prompt],
|
| 477 |
show_progress=True,
|
| 478 |
).then(
|
|
@@ -516,6 +520,7 @@ with gr.Blocks() as app:
|
|
| 516 |
num_turns,
|
| 517 |
num_rows,
|
| 518 |
private,
|
|
|
|
| 519 |
],
|
| 520 |
outputs=[success_message],
|
| 521 |
show_progress=True,
|
|
@@ -525,7 +530,7 @@ with gr.Blocks() as app:
|
|
| 525 |
outputs=[success_message],
|
| 526 |
).success(
|
| 527 |
fn=generate_pipeline_code,
|
| 528 |
-
inputs=[system_prompt, num_turns, num_rows],
|
| 529 |
outputs=[pipeline_code],
|
| 530 |
).success(
|
| 531 |
fn=show_pipeline_code_visibility,
|
|
|
|
| 15 |
validate_argilla_user_workspace_dataset,
|
| 16 |
validate_push_to_hub,
|
| 17 |
)
|
| 18 |
+
from synthetic_dataset_generator.constants import DEFAULT_BATCH_SIZE, SFT_AVAILABLE, MODEL
|
| 19 |
from synthetic_dataset_generator.pipelines.embeddings import (
|
| 20 |
get_embeddings,
|
| 21 |
get_sentence_embedding_dimensions,
|
|
|
|
| 49 |
return dataframe
|
| 50 |
|
| 51 |
|
| 52 |
+
def generate_system_prompt(dataset_description, progress=gr.Progress()):
|
| 53 |
progress(0.0, desc="Generating system prompt")
|
| 54 |
progress(0.3, desc="Initializing text generation")
|
| 55 |
+
generate_description = get_prompt_generator()
|
| 56 |
progress(0.7, desc="Generating system prompt")
|
| 57 |
result = next(
|
| 58 |
generate_description.process(
|
|
|
|
| 92 |
system_prompt: str,
|
| 93 |
num_turns: int = 1,
|
| 94 |
num_rows: int = 10,
|
| 95 |
+
temperature: float = 0.9,
|
| 96 |
is_sample: bool = False,
|
| 97 |
progress=gr.Progress(),
|
| 98 |
) -> pd.DataFrame:
|
| 99 |
progress(0.0, desc="(1/2) Generating instructions")
|
| 100 |
+
magpie_generator = get_magpie_generator(system_prompt, num_turns, temperature, is_sample)
|
| 101 |
+
response_generator = get_response_generator(system_prompt, num_turns, temperature, is_sample)
|
| 102 |
total_steps: int = num_rows * 2
|
| 103 |
batch_size = DEFAULT_BATCH_SIZE
|
| 104 |
|
|
|
|
| 217 |
num_turns: int = 1,
|
| 218 |
num_rows: int = 10,
|
| 219 |
private: bool = False,
|
| 220 |
+
temperature: float = 0.9,
|
| 221 |
oauth_token: Union[gr.OAuthToken, None] = None,
|
| 222 |
progress=gr.Progress(),
|
| 223 |
) -> pd.DataFrame:
|
|
|
|
| 225 |
system_prompt=system_prompt,
|
| 226 |
num_turns=num_turns,
|
| 227 |
num_rows=num_rows,
|
| 228 |
+
temperature=temperature,
|
| 229 |
)
|
| 230 |
push_dataset_to_hub(dataframe, org_name, repo_name, oauth_token, private)
|
| 231 |
try:
|
|
|
|
| 442 |
label="Temperature",
|
| 443 |
minimum=0.1,
|
| 444 |
maximum=1,
|
| 445 |
+
value=0.9,
|
| 446 |
step=0.1,
|
| 447 |
interactive=True,
|
| 448 |
)
|
|
|
|
| 466 |
system_prompt=system_prompt.value,
|
| 467 |
num_turns=num_turns.value,
|
| 468 |
num_rows=num_rows.value,
|
| 469 |
+
temperature=temperature.value,
|
| 470 |
)
|
| 471 |
pipeline_code = gr.Code(
|
| 472 |
value=code,
|
|
|
|
| 476 |
|
| 477 |
load_btn.click(
|
| 478 |
fn=generate_system_prompt,
|
| 479 |
+
inputs=[dataset_description],
|
| 480 |
outputs=[system_prompt],
|
| 481 |
show_progress=True,
|
| 482 |
).then(
|
|
|
|
| 520 |
num_turns,
|
| 521 |
num_rows,
|
| 522 |
private,
|
| 523 |
+
temperature
|
| 524 |
],
|
| 525 |
outputs=[success_message],
|
| 526 |
show_progress=True,
|
|
|
|
| 530 |
outputs=[success_message],
|
| 531 |
).success(
|
| 532 |
fn=generate_pipeline_code,
|
| 533 |
+
inputs=[system_prompt, num_turns, num_rows, temperature],
|
| 534 |
outputs=[pipeline_code],
|
| 535 |
).success(
|
| 536 |
fn=show_pipeline_code_visibility,
|
src/synthetic_dataset_generator/apps/textcat.py
CHANGED
|
@@ -45,10 +45,10 @@ def _get_dataframe():
|
|
| 45 |
)
|
| 46 |
|
| 47 |
|
| 48 |
-
def generate_system_prompt(dataset_description,
|
| 49 |
progress(0.0, desc="Generating text classification task")
|
| 50 |
progress(0.3, desc="Initializing text generation")
|
| 51 |
-
generate_description = get_prompt_generator(
|
| 52 |
progress(0.7, desc="Generating text classification task")
|
| 53 |
result = next(
|
| 54 |
generate_description.process(
|
|
@@ -89,13 +89,14 @@ def generate_dataset(
|
|
| 89 |
labels: List[str] = None,
|
| 90 |
num_labels: int = 1,
|
| 91 |
num_rows: int = 10,
|
|
|
|
| 92 |
is_sample: bool = False,
|
| 93 |
progress=gr.Progress(),
|
| 94 |
) -> pd.DataFrame:
|
| 95 |
progress(0.0, desc="(1/2) Generating text classification data")
|
| 96 |
labels = get_preprocess_labels(labels)
|
| 97 |
textcat_generator = get_textcat_generator(
|
| 98 |
-
difficulty=difficulty, clarity=clarity, is_sample=is_sample
|
| 99 |
)
|
| 100 |
labeller_generator = get_labeller_generator(
|
| 101 |
system_prompt=f"{system_prompt} {', '.join(labels)}",
|
|
@@ -204,6 +205,7 @@ def push_dataset(
|
|
| 204 |
num_rows: int = 10,
|
| 205 |
labels: List[str] = None,
|
| 206 |
private: bool = False,
|
|
|
|
| 207 |
oauth_token: Union[gr.OAuthToken, None] = None,
|
| 208 |
progress=gr.Progress(),
|
| 209 |
) -> pd.DataFrame:
|
|
@@ -214,6 +216,7 @@ def push_dataset(
|
|
| 214 |
num_labels=num_labels,
|
| 215 |
labels=labels,
|
| 216 |
num_rows=num_rows,
|
|
|
|
| 217 |
)
|
| 218 |
push_dataset_to_hub(
|
| 219 |
dataframe, org_name, repo_name, num_labels, labels, oauth_token, private
|
|
@@ -471,6 +474,7 @@ with gr.Blocks() as app:
|
|
| 471 |
labels=labels.value,
|
| 472 |
num_labels=num_labels.value,
|
| 473 |
num_rows=num_rows.value,
|
|
|
|
| 474 |
)
|
| 475 |
pipeline_code = gr.Code(
|
| 476 |
value=code,
|
|
@@ -480,7 +484,7 @@ with gr.Blocks() as app:
|
|
| 480 |
|
| 481 |
load_btn.click(
|
| 482 |
fn=generate_system_prompt,
|
| 483 |
-
inputs=[dataset_description
|
| 484 |
outputs=[system_prompt, labels],
|
| 485 |
show_progress=True,
|
| 486 |
).then(
|
|
@@ -537,6 +541,7 @@ with gr.Blocks() as app:
|
|
| 537 |
num_rows,
|
| 538 |
labels,
|
| 539 |
private,
|
|
|
|
| 540 |
],
|
| 541 |
outputs=[success_message],
|
| 542 |
show_progress=True,
|
|
@@ -553,6 +558,7 @@ with gr.Blocks() as app:
|
|
| 553 |
labels,
|
| 554 |
num_labels,
|
| 555 |
num_rows,
|
|
|
|
| 556 |
],
|
| 557 |
outputs=[pipeline_code],
|
| 558 |
).success(
|
|
|
|
| 45 |
)
|
| 46 |
|
| 47 |
|
| 48 |
+
def generate_system_prompt(dataset_description, progress=gr.Progress()):
|
| 49 |
progress(0.0, desc="Generating text classification task")
|
| 50 |
progress(0.3, desc="Initializing text generation")
|
| 51 |
+
generate_description = get_prompt_generator()
|
| 52 |
progress(0.7, desc="Generating text classification task")
|
| 53 |
result = next(
|
| 54 |
generate_description.process(
|
|
|
|
| 89 |
labels: List[str] = None,
|
| 90 |
num_labels: int = 1,
|
| 91 |
num_rows: int = 10,
|
| 92 |
+
temperature: float = 0.9,
|
| 93 |
is_sample: bool = False,
|
| 94 |
progress=gr.Progress(),
|
| 95 |
) -> pd.DataFrame:
|
| 96 |
progress(0.0, desc="(1/2) Generating text classification data")
|
| 97 |
labels = get_preprocess_labels(labels)
|
| 98 |
textcat_generator = get_textcat_generator(
|
| 99 |
+
difficulty=difficulty, clarity=clarity, temperature=temperature, is_sample=is_sample
|
| 100 |
)
|
| 101 |
labeller_generator = get_labeller_generator(
|
| 102 |
system_prompt=f"{system_prompt} {', '.join(labels)}",
|
|
|
|
| 205 |
num_rows: int = 10,
|
| 206 |
labels: List[str] = None,
|
| 207 |
private: bool = False,
|
| 208 |
+
temperature: float = 0.8,
|
| 209 |
oauth_token: Union[gr.OAuthToken, None] = None,
|
| 210 |
progress=gr.Progress(),
|
| 211 |
) -> pd.DataFrame:
|
|
|
|
| 216 |
num_labels=num_labels,
|
| 217 |
labels=labels,
|
| 218 |
num_rows=num_rows,
|
| 219 |
+
temperature=temperature,
|
| 220 |
)
|
| 221 |
push_dataset_to_hub(
|
| 222 |
dataframe, org_name, repo_name, num_labels, labels, oauth_token, private
|
|
|
|
| 474 |
labels=labels.value,
|
| 475 |
num_labels=num_labels.value,
|
| 476 |
num_rows=num_rows.value,
|
| 477 |
+
temperature=temperature.value,
|
| 478 |
)
|
| 479 |
pipeline_code = gr.Code(
|
| 480 |
value=code,
|
|
|
|
| 484 |
|
| 485 |
load_btn.click(
|
| 486 |
fn=generate_system_prompt,
|
| 487 |
+
inputs=[dataset_description],
|
| 488 |
outputs=[system_prompt, labels],
|
| 489 |
show_progress=True,
|
| 490 |
).then(
|
|
|
|
| 541 |
num_rows,
|
| 542 |
labels,
|
| 543 |
private,
|
| 544 |
+
temperature
|
| 545 |
],
|
| 546 |
outputs=[success_message],
|
| 547 |
show_progress=True,
|
|
|
|
| 558 |
labels,
|
| 559 |
num_labels,
|
| 560 |
num_rows,
|
| 561 |
+
temperature
|
| 562 |
],
|
| 563 |
outputs=[pipeline_code],
|
| 564 |
).success(
|
src/synthetic_dataset_generator/pipelines/sft.py
CHANGED
|
@@ -140,7 +140,7 @@ def _get_output_mappings(num_turns):
|
|
| 140 |
return {"conversation": "messages"}
|
| 141 |
|
| 142 |
|
| 143 |
-
def get_prompt_generator(
|
| 144 |
prompt_generator = TextGeneration(
|
| 145 |
llm=InferenceEndpointsLLM(
|
| 146 |
api_key=_get_next_api_key(),
|
|
@@ -148,7 +148,7 @@ def get_prompt_generator(temperature):
|
|
| 148 |
tokenizer_id=MODEL,
|
| 149 |
base_url=BASE_URL,
|
| 150 |
generation_kwargs={
|
| 151 |
-
"temperature":
|
| 152 |
"max_new_tokens": 2048,
|
| 153 |
"do_sample": True,
|
| 154 |
},
|
|
@@ -160,7 +160,7 @@ def get_prompt_generator(temperature):
|
|
| 160 |
return prompt_generator
|
| 161 |
|
| 162 |
|
| 163 |
-
def get_magpie_generator(system_prompt, num_turns, is_sample):
|
| 164 |
input_mappings = _get_output_mappings(num_turns)
|
| 165 |
output_mappings = input_mappings.copy()
|
| 166 |
if num_turns == 1:
|
|
@@ -172,7 +172,7 @@ def get_magpie_generator(system_prompt, num_turns, is_sample):
|
|
| 172 |
api_key=_get_next_api_key(),
|
| 173 |
magpie_pre_query_template=MAGPIE_PRE_QUERY_TEMPLATE,
|
| 174 |
generation_kwargs={
|
| 175 |
-
"temperature":
|
| 176 |
"do_sample": True,
|
| 177 |
"max_new_tokens": 256 if is_sample else 512,
|
| 178 |
"stop_sequences": _STOP_SEQUENCES,
|
|
@@ -192,7 +192,7 @@ def get_magpie_generator(system_prompt, num_turns, is_sample):
|
|
| 192 |
api_key=_get_next_api_key(),
|
| 193 |
magpie_pre_query_template=MAGPIE_PRE_QUERY_TEMPLATE,
|
| 194 |
generation_kwargs={
|
| 195 |
-
"temperature":
|
| 196 |
"do_sample": True,
|
| 197 |
"max_new_tokens": 256 if is_sample else 1024,
|
| 198 |
"stop_sequences": _STOP_SEQUENCES,
|
|
@@ -243,7 +243,7 @@ def get_response_generator(system_prompt, num_turns, is_sample):
|
|
| 243 |
return response_generator
|
| 244 |
|
| 245 |
|
| 246 |
-
def generate_pipeline_code(system_prompt, num_turns, num_rows):
|
| 247 |
input_mappings = _get_output_mappings(num_turns)
|
| 248 |
code = f"""
|
| 249 |
# Requirements: `pip install distilabel[hf-inference-endpoints]`
|
|
@@ -266,7 +266,7 @@ with Pipeline(name="sft") as pipeline:
|
|
| 266 |
base_url=BASE_URL,
|
| 267 |
magpie_pre_query_template="llama3",
|
| 268 |
generation_kwargs={{
|
| 269 |
-
"temperature":
|
| 270 |
"do_sample": True,
|
| 271 |
"max_new_tokens": 2048,
|
| 272 |
"stop_sequences": {_STOP_SEQUENCES}
|
|
|
|
| 140 |
return {"conversation": "messages"}
|
| 141 |
|
| 142 |
|
| 143 |
+
def get_prompt_generator():
|
| 144 |
prompt_generator = TextGeneration(
|
| 145 |
llm=InferenceEndpointsLLM(
|
| 146 |
api_key=_get_next_api_key(),
|
|
|
|
| 148 |
tokenizer_id=MODEL,
|
| 149 |
base_url=BASE_URL,
|
| 150 |
generation_kwargs={
|
| 151 |
+
"temperature": 0.8,
|
| 152 |
"max_new_tokens": 2048,
|
| 153 |
"do_sample": True,
|
| 154 |
},
|
|
|
|
| 160 |
return prompt_generator
|
| 161 |
|
| 162 |
|
| 163 |
+
def get_magpie_generator(system_prompt, num_turns, temperature, is_sample):
|
| 164 |
input_mappings = _get_output_mappings(num_turns)
|
| 165 |
output_mappings = input_mappings.copy()
|
| 166 |
if num_turns == 1:
|
|
|
|
| 172 |
api_key=_get_next_api_key(),
|
| 173 |
magpie_pre_query_template=MAGPIE_PRE_QUERY_TEMPLATE,
|
| 174 |
generation_kwargs={
|
| 175 |
+
"temperature": temperature,
|
| 176 |
"do_sample": True,
|
| 177 |
"max_new_tokens": 256 if is_sample else 512,
|
| 178 |
"stop_sequences": _STOP_SEQUENCES,
|
|
|
|
| 192 |
api_key=_get_next_api_key(),
|
| 193 |
magpie_pre_query_template=MAGPIE_PRE_QUERY_TEMPLATE,
|
| 194 |
generation_kwargs={
|
| 195 |
+
"temperature": temperature,
|
| 196 |
"do_sample": True,
|
| 197 |
"max_new_tokens": 256 if is_sample else 1024,
|
| 198 |
"stop_sequences": _STOP_SEQUENCES,
|
|
|
|
| 243 |
return response_generator
|
| 244 |
|
| 245 |
|
| 246 |
+
def generate_pipeline_code(system_prompt, num_turns, num_rows, temperature):
|
| 247 |
input_mappings = _get_output_mappings(num_turns)
|
| 248 |
code = f"""
|
| 249 |
# Requirements: `pip install distilabel[hf-inference-endpoints]`
|
|
|
|
| 266 |
base_url=BASE_URL,
|
| 267 |
magpie_pre_query_template="llama3",
|
| 268 |
generation_kwargs={{
|
| 269 |
+
"temperature": {temperature},
|
| 270 |
"do_sample": True,
|
| 271 |
"max_new_tokens": 2048,
|
| 272 |
"stop_sequences": {_STOP_SEQUENCES}
|
src/synthetic_dataset_generator/pipelines/textcat.py
CHANGED
|
@@ -66,7 +66,7 @@ class TextClassificationTask(BaseModel):
|
|
| 66 |
)
|
| 67 |
|
| 68 |
|
| 69 |
-
def get_prompt_generator(
|
| 70 |
prompt_generator = TextGeneration(
|
| 71 |
llm=InferenceEndpointsLLM(
|
| 72 |
api_key=_get_next_api_key(),
|
|
@@ -74,7 +74,7 @@ def get_prompt_generator(temperature):
|
|
| 74 |
base_url=BASE_URL,
|
| 75 |
structured_output={"format": "json", "schema": TextClassificationTask},
|
| 76 |
generation_kwargs={
|
| 77 |
-
"temperature":
|
| 78 |
"max_new_tokens": 2048,
|
| 79 |
"do_sample": True,
|
| 80 |
},
|
|
@@ -86,14 +86,14 @@ def get_prompt_generator(temperature):
|
|
| 86 |
return prompt_generator
|
| 87 |
|
| 88 |
|
| 89 |
-
def get_textcat_generator(difficulty, clarity, is_sample):
|
| 90 |
textcat_generator = GenerateTextClassificationData(
|
| 91 |
llm=InferenceEndpointsLLM(
|
| 92 |
model_id=MODEL,
|
| 93 |
base_url=BASE_URL,
|
| 94 |
api_key=_get_next_api_key(),
|
| 95 |
generation_kwargs={
|
| 96 |
-
"temperature":
|
| 97 |
"max_new_tokens": 256 if is_sample else 2048,
|
| 98 |
"do_sample": True,
|
| 99 |
"top_k": 50,
|
|
@@ -135,6 +135,7 @@ def generate_pipeline_code(
|
|
| 135 |
labels: List[str] = None,
|
| 136 |
num_labels: int = 1,
|
| 137 |
num_rows: int = 10,
|
|
|
|
| 138 |
) -> str:
|
| 139 |
labels = get_preprocess_labels(labels)
|
| 140 |
base_code = f"""
|
|
@@ -163,7 +164,7 @@ with Pipeline(name="textcat") as pipeline:
|
|
| 163 |
base_url=BASE_URL,
|
| 164 |
api_key=os.environ["API_KEY"],
|
| 165 |
generation_kwargs={{
|
| 166 |
-
"temperature":
|
| 167 |
"max_new_tokens": 2048,
|
| 168 |
"do_sample": True,
|
| 169 |
"top_k": 50,
|
|
|
|
| 66 |
)
|
| 67 |
|
| 68 |
|
| 69 |
+
def get_prompt_generator():
|
| 70 |
prompt_generator = TextGeneration(
|
| 71 |
llm=InferenceEndpointsLLM(
|
| 72 |
api_key=_get_next_api_key(),
|
|
|
|
| 74 |
base_url=BASE_URL,
|
| 75 |
structured_output={"format": "json", "schema": TextClassificationTask},
|
| 76 |
generation_kwargs={
|
| 77 |
+
"temperature": 0.8,
|
| 78 |
"max_new_tokens": 2048,
|
| 79 |
"do_sample": True,
|
| 80 |
},
|
|
|
|
| 86 |
return prompt_generator
|
| 87 |
|
| 88 |
|
| 89 |
+
def get_textcat_generator(difficulty, clarity, temperature, is_sample):
|
| 90 |
textcat_generator = GenerateTextClassificationData(
|
| 91 |
llm=InferenceEndpointsLLM(
|
| 92 |
model_id=MODEL,
|
| 93 |
base_url=BASE_URL,
|
| 94 |
api_key=_get_next_api_key(),
|
| 95 |
generation_kwargs={
|
| 96 |
+
"temperature": temperature,
|
| 97 |
"max_new_tokens": 256 if is_sample else 2048,
|
| 98 |
"do_sample": True,
|
| 99 |
"top_k": 50,
|
|
|
|
| 135 |
labels: List[str] = None,
|
| 136 |
num_labels: int = 1,
|
| 137 |
num_rows: int = 10,
|
| 138 |
+
temperature: float = 0.9,
|
| 139 |
) -> str:
|
| 140 |
labels = get_preprocess_labels(labels)
|
| 141 |
base_code = f"""
|
|
|
|
| 164 |
base_url=BASE_URL,
|
| 165 |
api_key=os.environ["API_KEY"],
|
| 166 |
generation_kwargs={{
|
| 167 |
+
"temperature": {temperature},
|
| 168 |
"max_new_tokens": 2048,
|
| 169 |
"do_sample": True,
|
| 170 |
"top_k": 50,
|