File size: 4,470 Bytes
6a3a328
 
 
 
 
 
 
 
 
6bbd9db
 
2589871
 
6bbd9db
 
 
 
4f70fa6
6a3a328
 
14a2f01
 
6a3a328
 
5da8fea
 
2a77066
 
2589871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46779cd
2589871
 
 
2a77066
 
 
 
4659419
 
 
 
 
 
 
 
 
4f70fa6
 
 
b61deaf
6bbd9db
 
 
 
 
4f70fa6
 
 
 
6bbd9db
 
 
 
 
 
 
 
 
 
 
 
4f70fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a77066
 
 
 
6a3a328
 
9e66fa1
6a3a328
 
2a77066
6a3a328
 
d0dd251
4f70fa6
 
2a77066
 
 
6a3a328
 
a3d2a2b
6a3a328
 
5489b52
 
4f70fa6
 
 
 
 
 
 
 
6a3a328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# -*- coding: utf-8 -*-
"""
-------------------------------------------------
   @File Name:     app.py
   @Author:        Luyao.zhang
   @Date:          2023/5/15
   @Description:
-------------------------------------------------
"""

HuggingFace = True
update_model_id = 0
base_download_path = "downloaded"

if HuggingFace is False:
    from dotenv import load_dotenv
    load_dotenv()

from pathlib import Path
from PIL import Image
import streamlit as st

import config
from utils import load_model, infer_uploaded_image, infer_uploaded_video, infer_uploaded_webcam
import os

query_params = st.experimental_get_query_params()

#------------
if update_model_id is not None:
    if HuggingFace is False:
        model_name = os.getenv("m{}_name".format(update_model_id))
        model_extname = os.getenv("m{}_type".format(update_model_id))

    else:
        model_name = st.secrets["m{}_name".format(update_model_id)]
        model_extname = st.secrets["m{}_type".format(update_model_id)]

    path_model = os.path.join(base_download_path, model_name + model_extname)
    if os.path.exists(path_model):
        try:
            os.remove(path_model)
        except:
            print("Cannot remove", path_model)
            pass

#-------------

qmodel = 'crowded_human'
if 'model' in query_params:
    qmodel = query_params['model'][0]

# setting page layout
st.set_page_config(
    page_title="YOLO.dog",
    page_icon="🤖",
    layout="wide",
    initial_sidebar_state="expanded"
    )


#------------------------
if not os.path.exists(base_download_path):
    os.makedirs(base_download_path)

if HuggingFace is False:
    model_count = int(os.getenv("model_count"))

else:
    model_count = int(st.secrets["model_count"])

model_info = {}
models_list = []
for i in range(0, model_count):
    if HuggingFace is False:
        model_name = os.getenv("m{}_name".format(i))
        gdrive_id = os.getenv("m{}_griv".format(i))
        model_extname = os.getenv("m{}_type".format(i))
        model_desc = os.getenv("m{}_desc".format(i))

    else:
        model_name = st.secrets["m{}_name".format(i)]
        gdrive_id = st.secrets["m{}_griv".format(i)]
        model_extname = st.secrets["m{}_type".format(i)]
        model_desc = st.secrets["m{}_desc".format(i)]

    print(i, model_name, gdrive_id, model_extname, model_desc)

    path_model = os.path.join(base_download_path, model_name + model_extname)
    print('path_model', path_model)
    model_info.update( {model_desc:path_model} )
    models_list.append(model_desc)

    if not os.path.exists(path_model):
        download_link = "https://drive.google.com/uc?export=download&confirm=t&id={}".format(gdrive_id)
        #subprocess.Popen( 'gdown {}'.format(download_link)
        #if gdrive_id[:4] == "http":
        print('wget -O {} --content-disposition "{}"'.format(path_model, download_link))
        os.system( 'wget -O {} --content-disposition "{}"'.format(path_model, download_link))
        #else:
        #    download_file_from_google_drive(gdrive_id, path_model)

#print('models_list', models_list)
if qmodel not in models_list:
    qmodel = models_list[0]


# main page heading
#st.title( model_info[qmodel] )

# sidebar
st.sidebar.header("Model Config")

# model options
task_type = "Detection"

model_type = st.sidebar.selectbox(
   "Models list",
   models_list,
   index=models_list.index(qmodel) )

confidence = float(st.sidebar.slider(
    "Select Model Confidence", 10, 100, 5)) / 100

if model_type:
    st.header('{} Model Trial'.format(model_type),divider='rainbow')
    st.subheader('Use your :blue[photo/video] :sunglasses:')
    model_path = model_info[model_type]

    try:
        print('model_path', model_path)
        model = load_model(model_path)
    except Exception as e:
        st.error(f"Unable to load model. Please check the specified path: {model_path}")

else:
    st.error("Please Select Model in Sidebar")

# image/video options
st.sidebar.header("Image/Video Config")
source_selectbox = st.sidebar.selectbox(
    "Select Source",
    config.SOURCES_LIST
)

source_img = None
if source_selectbox == config.SOURCES_LIST[0]: # Image
    infer_uploaded_image(confidence, model)
elif source_selectbox == config.SOURCES_LIST[1]: # Video
    infer_uploaded_video(confidence, model)
elif source_selectbox == config.SOURCES_LIST[2]: # Webcam
    infer_uploaded_webcam(confidence, model)
else:
    st.error("Currently only 'Image' and 'Video' source are implemented")