Spaces:
Running
Running
# https://github.com/google-research/tensorflow-coder/blob/master/tf_coder/tf_coder_main.py | |
import streamlit as st | |
from tf_coder.value_search import colab_interface | |
from tf_coder.value_search import value_search_settings | |
import io | |
from contextlib import redirect_stdout | |
inputs = st.text_area('The input tensor(s) specified as key-value pairs', placeholder="{'rows': [10, 20, 30],'cols': [1,2,3,4]}") | |
# The single desired output tensor. | |
st.sidebar.header("Generation settings:") | |
gen_kwargs["do_sample"] = st.sidebar.radio("Decoding strategy", ["Require All", "Require One"]) == "Require All" | |
gen_kwargs["max_new_tokens"] = st.sidebar.slider("Number of tokens to generate", value=default_length, min_value=8, step=8, max_value=256) | |
if gen_kwargs["do_sample"]: | |
gen_kwargs["temperature"] = st.sidebar.slider("Temperature", value = 0.2, min_value = 0.0, max_value=2.0, step=0.05) | |
gen_kwargs["top_k"] = st.sidebar.slider("Top-k", min_value = 0, max_value=100, value = 0) | |
gen_kwargs["top_p"] = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.01, value = 0.95) | |
settings = value_search_settings.from_dict({ | |
'timeout': 300, | |
'only_minimal_solutions': False, | |
'max_solutions': 1, | |
'require_all_inputs_used': True, | |
'require_one_input_used': False, | |
}) | |
with io.StringIO() as buf, redirect_stdout(buf): | |
output = [[11, 12, 13, 14], | |
[21, 22, 23, 24], | |
[31, 32, 33, 34]] | |
# A list of relevant scalar constants (if any). | |
constants = [] | |
# An English description of the tensor manipulation. | |
description = 'add two vectors with broadcasting to get a matrix' | |
results = colab_interface.run_value_search_from_colab(eval(inputs), output, constants, description, settings) | |
stdout = buf.getvalue() | |
st.code(stdout, language='bash') |