Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
from PIL import Image
|
3 |
from torchvision.transforms import v2
|
4 |
import torchvision.models as models
|
@@ -63,57 +63,5 @@ gradio_app = gr.Interface(
|
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
gradio_app.launch()
|
66 |
-
"""
|
67 |
-
|
68 |
-
import torch
|
69 |
-
from PIL import Image
|
70 |
-
from torchvision.transforms import v2
|
71 |
-
import torchvision.models as models
|
72 |
-
import gradio as gr
|
73 |
-
|
74 |
-
# Load the pre-trained model and set it up (as in your original code)
|
75 |
-
model = models.resnet18()
|
76 |
-
num_ftrs = model.fc.in_features
|
77 |
-
model.fc = torch.nn.Linear(num_ftrs, 73)
|
78 |
-
model.load_state_dict(torch.load('Dogrun2.pth', map_location=torch.device('cpu')))
|
79 |
-
model.eval()
|
80 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
81 |
-
model.to(device)
|
82 |
-
|
83 |
-
# Define image transformations
|
84 |
-
transforms_test = v2.Compose([
|
85 |
-
v2.Resize((224, 224), antialias=True),
|
86 |
-
v2.CenterCrop((224, 224)),
|
87 |
-
v2.ToImage(),
|
88 |
-
v2.ToDtype(torch.float32, scale=True),
|
89 |
-
v2.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
90 |
-
])
|
91 |
|
92 |
-
labels = [...] # Your list of dog breeds
|
93 |
|
94 |
-
def predict(input_img):
|
95 |
-
transformed_img = transforms_test(input_img)
|
96 |
-
transformed_img = transformed_img.unsqueeze(0).to(device)
|
97 |
-
logits = model(transformed_img)
|
98 |
-
output_softmax = torch.nn.functional.softmax(logits, dim=1)
|
99 |
-
topk_values, topk_indices = torch.topk(output_softmax, 3)
|
100 |
-
|
101 |
-
topk_indices = topk_indices.tolist()[0]
|
102 |
-
topk_labels = [labels[index] for index in topk_indices]
|
103 |
-
topk_probs = topk_values[0].tolist()
|
104 |
-
|
105 |
-
result_lines = [f"**{label}**: {prob*100:.2f}%" for label, prob in zip(topk_labels, topk_probs)]
|
106 |
-
result = "\n".join(result_lines)
|
107 |
-
|
108 |
-
return result
|
109 |
-
|
110 |
-
# Create Gradio interface
|
111 |
-
gradio_app = gr.Interface(
|
112 |
-
fn=predict,
|
113 |
-
inputs=gr.Image(label="Please select a clear image of your good dog to upload.", sources=['upload'], type="pil"),
|
114 |
-
outputs=gr.Markdown(label="**Predicted Breeds:**"),
|
115 |
-
title="What is Your Dog Breed?",
|
116 |
-
)
|
117 |
-
|
118 |
-
if __name__ == "__main__":
|
119 |
-
gradio_app.launch()
|
|
|
1 |
+
import torch
|
2 |
from PIL import Image
|
3 |
from torchvision.transforms import v2
|
4 |
import torchvision.models as models
|
|
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
gradio_app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
|
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|