# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the Stable Diffusion checkpoints."""

import re
from io import BytesIO
from typing import Optional

import requests
import torch
from transformers import (
    AutoFeatureExtractor,
    BertTokenizerFast,
    CLIPImageProcessor,
    CLIPTextModel,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionConfig,
    CLIPVisionModelWithProjection,
)

from diffusers.models import (
    AutoencoderKL,
    PriorTransformer,
    UNet2DConditionModel,
)
from diffusers.schedulers import (
    DDIMScheduler,
    DDPMScheduler,
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    HeunDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    UnCLIPScheduler,
)
from diffusers.utils.import_utils import BACKENDS_MAPPING


def shave_segments(path, n_shave_prefix_segments=1):
    """
    Removes segments. Positive values shave the first segments, negative shave the last segments.
    """
    if n_shave_prefix_segments >= 0:
        return ".".join(path.split(".")[n_shave_prefix_segments:])
    else:
        return ".".join(path.split(".")[:n_shave_prefix_segments])


def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside resnets to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item.replace("in_layers.0", "norm1")
        new_item = new_item.replace("in_layers.2", "conv1")

        new_item = new_item.replace("out_layers.0", "norm2")
        new_item = new_item.replace("out_layers.3", "conv2")

        new_item = new_item.replace("emb_layers.1", "time_emb_proj")
        new_item = new_item.replace("skip_connection", "conv_shortcut")

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside resnets to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item

        new_item = new_item.replace("nin_shortcut", "conv_shortcut")
        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def renew_attention_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside attentions to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item

        #         new_item = new_item.replace('norm.weight', 'group_norm.weight')
        #         new_item = new_item.replace('norm.bias', 'group_norm.bias')

        #         new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
        #         new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')

        #         new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside attentions to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item

        new_item = new_item.replace("norm.weight", "group_norm.weight")
        new_item = new_item.replace("norm.bias", "group_norm.bias")

        new_item = new_item.replace("q.weight", "query.weight")
        new_item = new_item.replace("q.bias", "query.bias")

        new_item = new_item.replace("k.weight", "key.weight")
        new_item = new_item.replace("k.bias", "key.bias")

        new_item = new_item.replace("v.weight", "value.weight")
        new_item = new_item.replace("v.bias", "value.bias")

        new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
        new_item = new_item.replace("proj_out.bias", "proj_attn.bias")

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def assign_to_checkpoint(
    paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
    """
    This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
    attention layers, and takes into account additional replacements that may arise.

    Assigns the weights to the new checkpoint.
    """
    assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."

    # Splits the attention layers into three variables.
    if attention_paths_to_split is not None:
        for path, path_map in attention_paths_to_split.items():
            old_tensor = old_checkpoint[path]
            channels = old_tensor.shape[0] // 3

            target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)

            num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3

            old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
            query, key, value = old_tensor.split(channels // num_heads, dim=1)

            checkpoint[path_map["query"]] = query.reshape(target_shape)
            checkpoint[path_map["key"]] = key.reshape(target_shape)
            checkpoint[path_map["value"]] = value.reshape(target_shape)

    for path in paths:
        new_path = path["new"]

        # These have already been assigned
        if attention_paths_to_split is not None and new_path in attention_paths_to_split:
            continue

        # Global renaming happens here
        new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
        new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
        new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")

        if additional_replacements is not None:
            for replacement in additional_replacements:
                new_path = new_path.replace(replacement["old"], replacement["new"])

        # proj_attn.weight has to be converted from conv 1D to linear
        if "proj_attn.weight" in new_path:
            checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
        else:
            checkpoint[new_path] = old_checkpoint[path["old"]]


def conv_attn_to_linear(checkpoint):
    keys = list(checkpoint.keys())
    attn_keys = ["query.weight", "key.weight", "value.weight"]
    for key in keys:
        if ".".join(key.split(".")[-2:]) in attn_keys:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0, 0]
        elif "proj_attn.weight" in key:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0]


def create_unet_diffusers_config(original_config, image_size: int, controlnet=False):
    """
    Creates a config for the diffusers based on the config of the LDM model.
    """
    if controlnet:
        unet_params = original_config.model.params.control_stage_config.params
    else:
        unet_params = original_config.model.params.unet_config.params

    vae_params = original_config.model.params.first_stage_config.params.ddconfig

    block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]

    down_block_types = []
    resolution = 1
    for i in range(len(block_out_channels)):
        block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
        down_block_types.append(block_type)
        if i != len(block_out_channels) - 1:
            resolution *= 2

    up_block_types = []
    for i in range(len(block_out_channels)):
        block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
        up_block_types.append(block_type)
        resolution //= 2

    vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)

    head_dim = unet_params.num_heads if "num_heads" in unet_params else None
    use_linear_projection = (
        unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
    )
    if use_linear_projection:
        # stable diffusion 2-base-512 and 2-768
        if head_dim is None:
            head_dim = [5, 10, 20, 20]

    class_embed_type = None
    projection_class_embeddings_input_dim = None

    if "num_classes" in unet_params:
        if unet_params.num_classes == "sequential":
            class_embed_type = "projection"
            assert "adm_in_channels" in unet_params
            projection_class_embeddings_input_dim = unet_params.adm_in_channels
        else:
            raise NotImplementedError(f"Unknown conditional unet num_classes config: {unet_params.num_classes}")

    config = {
        "sample_size": image_size // vae_scale_factor,
        "in_channels": unet_params.in_channels,
        "down_block_types": tuple(down_block_types),
        "block_out_channels": tuple(block_out_channels),
        "layers_per_block": unet_params.num_res_blocks,
        "cross_attention_dim": unet_params.context_dim,
        "attention_head_dim": head_dim,
        "use_linear_projection": use_linear_projection,
        "class_embed_type": class_embed_type,
        "projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
    }

    if not controlnet:
        config["out_channels"] = unet_params.out_channels
        config["up_block_types"] = tuple(up_block_types)

    return config


def create_vae_diffusers_config(original_config, image_size: int):
    """
    Creates a config for the diffusers based on the config of the LDM model.
    """
    vae_params = original_config.model.params.first_stage_config.params.ddconfig
    _ = original_config.model.params.first_stage_config.params.embed_dim

    block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
    down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
    up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)

    config = {
        "sample_size": image_size,
        "in_channels": vae_params.in_channels,
        "out_channels": vae_params.out_ch,
        "down_block_types": tuple(down_block_types),
        "up_block_types": tuple(up_block_types),
        "block_out_channels": tuple(block_out_channels),
        "latent_channels": vae_params.z_channels,
        "layers_per_block": vae_params.num_res_blocks,
    }
    return config


def create_diffusers_schedular(original_config):
    schedular = DDIMScheduler(
        num_train_timesteps=original_config.model.params.timesteps,
        beta_start=original_config.model.params.linear_start,
        beta_end=original_config.model.params.linear_end,
        beta_schedule="scaled_linear",
    )
    return schedular


def create_ldm_bert_config(original_config):
    bert_params = original_config.model.parms.cond_stage_config.params
    config = LDMBertConfig(
        d_model=bert_params.n_embed,
        encoder_layers=bert_params.n_layer,
        encoder_ffn_dim=bert_params.n_embed * 4,
    )
    return config


def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False, controlnet=False):
    """
    Takes a state dict and a config, and returns a converted checkpoint.
    """

    # extract state_dict for UNet
    unet_state_dict = {}
    keys = list(checkpoint.keys())

    if controlnet:
        unet_key = "control_model."
    else:
        unet_key = "model.diffusion_model."

    # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
    if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
        print(f"Checkpoint {path} has both EMA and non-EMA weights.")
        print(
            "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
            " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
        )
        for key in keys:
            if key.startswith("model.diffusion_model"):
                flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
                unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
    else:
        if sum(k.startswith("model_ema") for k in keys) > 100:
            print(
                "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
                " weights (usually better for inference), please make sure to add the `--extract_ema` flag."
            )

        for key in keys:
            if key.startswith(unet_key):
                unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)

    new_checkpoint = {}

    new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
    new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
    new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
    new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]

    if config["class_embed_type"] is None:
        # No parameters to port
        ...
    elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection":
        new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
        new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
        new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
        new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
    else:
        raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}")

    new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
    new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]

    if not controlnet:
        new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
        new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
        new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
        new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]

    # Retrieves the keys for the input blocks only
    num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
    input_blocks = {
        layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
        for layer_id in range(num_input_blocks)
    }

    # Retrieves the keys for the middle blocks only
    num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
    middle_blocks = {
        layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
        for layer_id in range(num_middle_blocks)
    }

    # Retrieves the keys for the output blocks only
    num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
    output_blocks = {
        layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
        for layer_id in range(num_output_blocks)
    }

    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)
        layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)

        resnets = [
            key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
        ]
        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]

        if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
                f"input_blocks.{i}.0.op.weight"
            )
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
                f"input_blocks.{i}.0.op.bias"
            )

        paths = renew_resnet_paths(resnets)
        meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
        assign_to_checkpoint(
            paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
        )

        if len(attentions):
            paths = renew_attention_paths(attentions)
            meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
            assign_to_checkpoint(
                paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
            )

    resnet_0 = middle_blocks[0]
    attentions = middle_blocks[1]
    resnet_1 = middle_blocks[2]

    resnet_0_paths = renew_resnet_paths(resnet_0)
    assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)

    resnet_1_paths = renew_resnet_paths(resnet_1)
    assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)

    attentions_paths = renew_attention_paths(attentions)
    meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(
        attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
    )

    for i in range(num_output_blocks):
        block_id = i // (config["layers_per_block"] + 1)
        layer_in_block_id = i % (config["layers_per_block"] + 1)
        output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
        output_block_list = {}

        for layer in output_block_layers:
            layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
            if layer_id in output_block_list:
                output_block_list[layer_id].append(layer_name)
            else:
                output_block_list[layer_id] = [layer_name]

        if len(output_block_list) > 1:
            resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
            attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]

            resnet_0_paths = renew_resnet_paths(resnets)
            paths = renew_resnet_paths(resnets)

            meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
            assign_to_checkpoint(
                paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
            )

            output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
            if ["conv.bias", "conv.weight"] in output_block_list.values():
                index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
                new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
                    f"output_blocks.{i}.{index}.conv.weight"
                ]
                new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
                    f"output_blocks.{i}.{index}.conv.bias"
                ]

                # Clear attentions as they have been attributed above.
                if len(attentions) == 2:
                    attentions = []

            if len(attentions):
                paths = renew_attention_paths(attentions)
                meta_path = {
                    "old": f"output_blocks.{i}.1",
                    "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
                }
                assign_to_checkpoint(
                    paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
                )
        else:
            resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
            for path in resnet_0_paths:
                old_path = ".".join(["output_blocks", str(i), path["old"]])
                new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])

                new_checkpoint[new_path] = unet_state_dict[old_path]

    if controlnet:
        # conditioning embedding

        orig_index = 0

        new_checkpoint["controlnet_cond_embedding.conv_in.weight"] = unet_state_dict.pop(
            f"input_hint_block.{orig_index}.weight"
        )
        new_checkpoint["controlnet_cond_embedding.conv_in.bias"] = unet_state_dict.pop(
            f"input_hint_block.{orig_index}.bias"
        )

        orig_index += 2

        diffusers_index = 0

        while diffusers_index < 6:
            new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.weight"] = unet_state_dict.pop(
                f"input_hint_block.{orig_index}.weight"
            )
            new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.bias"] = unet_state_dict.pop(
                f"input_hint_block.{orig_index}.bias"
            )
            diffusers_index += 1
            orig_index += 2

        new_checkpoint["controlnet_cond_embedding.conv_out.weight"] = unet_state_dict.pop(
            f"input_hint_block.{orig_index}.weight"
        )
        new_checkpoint["controlnet_cond_embedding.conv_out.bias"] = unet_state_dict.pop(
            f"input_hint_block.{orig_index}.bias"
        )

        # down blocks
        for i in range(num_input_blocks):
            new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = unet_state_dict.pop(f"zero_convs.{i}.0.weight")
            new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = unet_state_dict.pop(f"zero_convs.{i}.0.bias")

        # mid block
        new_checkpoint["controlnet_mid_block.weight"] = unet_state_dict.pop("middle_block_out.0.weight")
        new_checkpoint["controlnet_mid_block.bias"] = unet_state_dict.pop("middle_block_out.0.bias")

    return new_checkpoint


def convert_ldm_vae_checkpoint(checkpoint, config):
    # extract state dict for VAE
    vae_state_dict = {}
    vae_key = "first_stage_model."
    keys = list(checkpoint.keys())
    for key in keys:
        if key.startswith(vae_key):
            vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)

    new_checkpoint = {}

    new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
    new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
    new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
    new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
    new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
    new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]

    new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
    new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
    new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
    new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
    new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
    new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]

    new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
    new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
    new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
    new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]

    # Retrieves the keys for the encoder down blocks only
    num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
    down_blocks = {
        layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
    }

    # Retrieves the keys for the decoder up blocks only
    num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
    up_blocks = {
        layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
    }

    for i in range(num_down_blocks):
        resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]

        if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
                f"encoder.down.{i}.downsample.conv.weight"
            )
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
                f"encoder.down.{i}.downsample.conv.bias"
            )

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)

    mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)

    mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
    paths = renew_vae_attention_paths(mid_attentions)
    meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
    conv_attn_to_linear(new_checkpoint)

    for i in range(num_up_blocks):
        block_id = num_up_blocks - 1 - i
        resnets = [
            key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
        ]

        if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.weight"
            ]
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.bias"
            ]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)

    mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)

    mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
    paths = renew_vae_attention_paths(mid_attentions)
    meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
    conv_attn_to_linear(new_checkpoint)
    return new_checkpoint


def convert_ldm_bert_checkpoint(checkpoint, config):
    def _copy_attn_layer(hf_attn_layer, pt_attn_layer):
        hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight
        hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight
        hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight

        hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight
        hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias

    def _copy_linear(hf_linear, pt_linear):
        hf_linear.weight = pt_linear.weight
        hf_linear.bias = pt_linear.bias

    def _copy_layer(hf_layer, pt_layer):
        # copy layer norms
        _copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0])
        _copy_linear(hf_layer.final_layer_norm, pt_layer[1][0])

        # copy attn
        _copy_attn_layer(hf_layer.self_attn, pt_layer[0][1])

        # copy MLP
        pt_mlp = pt_layer[1][1]
        _copy_linear(hf_layer.fc1, pt_mlp.net[0][0])
        _copy_linear(hf_layer.fc2, pt_mlp.net[2])

    def _copy_layers(hf_layers, pt_layers):
        for i, hf_layer in enumerate(hf_layers):
            if i != 0:
                i += i
            pt_layer = pt_layers[i : i + 2]
            _copy_layer(hf_layer, pt_layer)

    hf_model = LDMBertModel(config).eval()

    # copy  embeds
    hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight
    hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight

    # copy layer norm
    _copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm)

    # copy hidden layers
    _copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers)

    _copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits)

    return hf_model


def convert_ldm_clip_checkpoint(checkpoint):
    text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
    keys = list(checkpoint.keys())

    text_model_dict = {}

    for key in keys:
        if key.startswith("cond_stage_model.transformer"):
            text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]

    text_model.load_state_dict(text_model_dict)

    return text_model


textenc_conversion_lst = [
    ("cond_stage_model.model.positional_embedding", "text_model.embeddings.position_embedding.weight"),
    ("cond_stage_model.model.token_embedding.weight", "text_model.embeddings.token_embedding.weight"),
    ("cond_stage_model.model.ln_final.weight", "text_model.final_layer_norm.weight"),
    ("cond_stage_model.model.ln_final.bias", "text_model.final_layer_norm.bias"),
]
textenc_conversion_map = {x[0]: x[1] for x in textenc_conversion_lst}

textenc_transformer_conversion_lst = [
    # (stable-diffusion, HF Diffusers)
    ("resblocks.", "text_model.encoder.layers."),
    ("ln_1", "layer_norm1"),
    ("ln_2", "layer_norm2"),
    (".c_fc.", ".fc1."),
    (".c_proj.", ".fc2."),
    (".attn", ".self_attn"),
    ("ln_final.", "transformer.text_model.final_layer_norm."),
    ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
    ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
]
protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst}
textenc_pattern = re.compile("|".join(protected.keys()))


def convert_paint_by_example_checkpoint(checkpoint):
    config = CLIPVisionConfig.from_pretrained("openai/clip-vit-large-patch14")
    model = PaintByExampleImageEncoder(config)

    keys = list(checkpoint.keys())

    text_model_dict = {}

    for key in keys:
        if key.startswith("cond_stage_model.transformer"):
            text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]

    # load clip vision
    model.model.load_state_dict(text_model_dict)

    # load mapper
    keys_mapper = {
        k[len("cond_stage_model.mapper.res") :]: v
        for k, v in checkpoint.items()
        if k.startswith("cond_stage_model.mapper")
    }

    MAPPING = {
        "attn.c_qkv": ["attn1.to_q", "attn1.to_k", "attn1.to_v"],
        "attn.c_proj": ["attn1.to_out.0"],
        "ln_1": ["norm1"],
        "ln_2": ["norm3"],
        "mlp.c_fc": ["ff.net.0.proj"],
        "mlp.c_proj": ["ff.net.2"],
    }

    mapped_weights = {}
    for key, value in keys_mapper.items():
        prefix = key[: len("blocks.i")]
        suffix = key.split(prefix)[-1].split(".")[-1]
        name = key.split(prefix)[-1].split(suffix)[0][1:-1]
        mapped_names = MAPPING[name]

        num_splits = len(mapped_names)
        for i, mapped_name in enumerate(mapped_names):
            new_name = ".".join([prefix, mapped_name, suffix])
            shape = value.shape[0] // num_splits
            mapped_weights[new_name] = value[i * shape : (i + 1) * shape]

    model.mapper.load_state_dict(mapped_weights)

    # load final layer norm
    model.final_layer_norm.load_state_dict(
        {
            "bias": checkpoint["cond_stage_model.final_ln.bias"],
            "weight": checkpoint["cond_stage_model.final_ln.weight"],
        }
    )

    # load final proj
    model.proj_out.load_state_dict(
        {
            "bias": checkpoint["proj_out.bias"],
            "weight": checkpoint["proj_out.weight"],
        }
    )

    # load uncond vector
    model.uncond_vector.data = torch.nn.Parameter(checkpoint["learnable_vector"])
    return model


def convert_open_clip_checkpoint(checkpoint):
    text_model = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="text_encoder")

    keys = list(checkpoint.keys())

    text_model_dict = {}

    if "cond_stage_model.model.text_projection" in checkpoint:
        d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0])
    else:
        d_model = 1024

    text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids")

    for key in keys:
        if "resblocks.23" in key:  # Diffusers drops the final layer and only uses the penultimate layer
            continue
        if key in textenc_conversion_map:
            text_model_dict[textenc_conversion_map[key]] = checkpoint[key]
        if key.startswith("cond_stage_model.model.transformer."):
            new_key = key[len("cond_stage_model.model.transformer.") :]
            if new_key.endswith(".in_proj_weight"):
                new_key = new_key[: -len(".in_proj_weight")]
                new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
                text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :]
                text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :]
                text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :]
            elif new_key.endswith(".in_proj_bias"):
                new_key = new_key[: -len(".in_proj_bias")]
                new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
                text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model]
                text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2]
                text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :]
            else:
                new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)

                text_model_dict[new_key] = checkpoint[key]

    text_model.load_state_dict(text_model_dict)

    return text_model


def stable_unclip_image_encoder(original_config):
    """
    Returns the image processor and clip image encoder for the img2img unclip pipeline.

    We currently know of two types of stable unclip models which separately use the clip and the openclip image
    encoders.
    """

    image_embedder_config = original_config.model.params.embedder_config

    sd_clip_image_embedder_class = image_embedder_config.target
    sd_clip_image_embedder_class = sd_clip_image_embedder_class.split(".")[-1]

    if sd_clip_image_embedder_class == "ClipImageEmbedder":
        clip_model_name = image_embedder_config.params.model

        if clip_model_name == "ViT-L/14":
            feature_extractor = CLIPImageProcessor()
            image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
        else:
            raise NotImplementedError(f"Unknown CLIP checkpoint name in stable diffusion checkpoint {clip_model_name}")

    elif sd_clip_image_embedder_class == "FrozenOpenCLIPImageEmbedder":
        feature_extractor = CLIPImageProcessor()
        image_encoder = CLIPVisionModelWithProjection.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
    else:
        raise NotImplementedError(
            f"Unknown CLIP image embedder class in stable diffusion checkpoint {sd_clip_image_embedder_class}"
        )

    return feature_extractor, image_encoder


def stable_unclip_image_noising_components(
    original_config, clip_stats_path: Optional[str] = None, device: Optional[str] = None
):
    """
    Returns the noising components for the img2img and txt2img unclip pipelines.

    Converts the stability noise augmentor into
    1. a `StableUnCLIPImageNormalizer` for holding the CLIP stats
    2. a `DDPMScheduler` for holding the noise schedule

    If the noise augmentor config specifies a clip stats path, the `clip_stats_path` must be provided.
    """
    noise_aug_config = original_config.model.params.noise_aug_config
    noise_aug_class = noise_aug_config.target
    noise_aug_class = noise_aug_class.split(".")[-1]

    if noise_aug_class == "CLIPEmbeddingNoiseAugmentation":
        noise_aug_config = noise_aug_config.params
        embedding_dim = noise_aug_config.timestep_dim
        max_noise_level = noise_aug_config.noise_schedule_config.timesteps
        beta_schedule = noise_aug_config.noise_schedule_config.beta_schedule

        image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedding_dim)
        image_noising_scheduler = DDPMScheduler(num_train_timesteps=max_noise_level, beta_schedule=beta_schedule)

        if "clip_stats_path" in noise_aug_config:
            if clip_stats_path is None:
                raise ValueError("This stable unclip config requires a `clip_stats_path`")

            clip_mean, clip_std = torch.load(clip_stats_path, map_location=device)
            clip_mean = clip_mean[None, :]
            clip_std = clip_std[None, :]

            clip_stats_state_dict = {
                "mean": clip_mean,
                "std": clip_std,
            }

            image_normalizer.load_state_dict(clip_stats_state_dict)
    else:
        raise NotImplementedError(f"Unknown noise augmentor class: {noise_aug_class}")

    return image_normalizer, image_noising_scheduler


def convert_controlnet_checkpoint(
    checkpoint, original_config, checkpoint_path, image_size, upcast_attention, extract_ema
):
    ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True)
    ctrlnet_config["upcast_attention"] = upcast_attention

    ctrlnet_config.pop("sample_size")

    controlnet_model = ControlNetModel(**ctrlnet_config)

    converted_ctrl_checkpoint = convert_ldm_unet_checkpoint(
        checkpoint, ctrlnet_config, path=checkpoint_path, extract_ema=extract_ema, controlnet=True
    )

    controlnet_model.load_state_dict(converted_ctrl_checkpoint)

    return controlnet_model