Update app.py
Browse files
app.py
CHANGED
@@ -4,15 +4,16 @@ from surprise import Dataset, Reader, SVD
|
|
4 |
from surprise.model_selection import train_test_split
|
5 |
from collections import defaultdict
|
6 |
|
7 |
-
# Step 1: Load dataset from Hugging Face (
|
8 |
-
dataset_url = "https://huggingface.co/
|
9 |
|
10 |
-
|
11 |
-
df = pd.read_csv(dataset_url)
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
st.
|
|
|
16 |
|
17 |
# Convert categorical columns to string (avoids data type issues)
|
18 |
categorical_columns = ['genre', 'orig_title', 'orig_lang', 'country', 'crew']
|
@@ -64,4 +65,4 @@ if st.button("Get Recommendations"):
|
|
64 |
recommendations = get_recommendations(selected_movies, selected_genre)
|
65 |
st.write("### Recommended Movies:")
|
66 |
for movie in recommendations:
|
67 |
-
st.write(f"- {movie}")
|
|
|
4 |
from surprise.model_selection import train_test_split
|
5 |
from collections import defaultdict
|
6 |
|
7 |
+
# Step 1: Load dataset from Hugging Face (raw file URL)
|
8 |
+
dataset_url = "https://huggingface.co/spaces/chrisaldikaraharja/MovieRecommendationEngine/resolve/main/imdb_movies.csv"
|
9 |
|
10 |
+
try:
|
11 |
+
df = pd.read_csv(dataset_url)
|
12 |
+
st.write("Dataset Loaded Successfully ✅")
|
13 |
+
st.write(df.head())
|
14 |
+
except Exception as e:
|
15 |
+
st.error(f"Failed to load dataset: {e}")
|
16 |
+
st.stop() # Stop the app if the dataset cannot be loaded
|
17 |
|
18 |
# Convert categorical columns to string (avoids data type issues)
|
19 |
categorical_columns = ['genre', 'orig_title', 'orig_lang', 'country', 'crew']
|
|
|
65 |
recommendations = get_recommendations(selected_movies, selected_genre)
|
66 |
st.write("### Recommended Movies:")
|
67 |
for movie in recommendations:
|
68 |
+
st.write(f"- {movie}")
|