choging's picture
Update app.py
6fc5a2a verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "winninghealth/WiNGPT-Babel"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
def translate(text):
prompt = f"<|im_start|>system\n中英互译下面的内容<|im_end|>\n<|im_start|>user\n{text}<|im_end|>\n<|im_start|>assistant\n"
inputs = tokenizer([prompt], return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return translated_text
def custom_api(text_list, source_lang, target_lang):
# 假设你的模型只支持中英互译
if source_lang == "zh-CN" and target_lang == "en":
translated_list = [translate(text) for text in text_list]
elif source_lang == "en" and target_lang == "zh-CN":
translated_list = [translate(text) for text in text_list]
else:
return {"error": "Unsupported language pair"}
return {"translations": [{"detected_source_lang": source_lang, "text": translated_text} for translated_text in translated_list]}
# 创建 Gradio 接口
iface = gr.Interface(
fn=custom_api,
inputs=[
gr.Textbox(lines=5, label="输入文本列表 (支持中英互译)", placeholder='["Hello", "World"]'),
gr.Textbox(label="源语言", placeholder="zh-CN"),
gr.Textbox(label="目标语言", placeholder="en")
],
outputs=gr.JSON(label="翻译结果"),
title="WiNGPT-Babel 翻译 Demo",
description="基于 WiNGPT-Babel 模型的翻译演示。支持中英互译。",
)
iface.launch()